Skip to main content

Study of Facial Micro-expressions in Psychology

Abstract

The study of micro-expressions has undergone a big change as a result of contemporary development in the areas of human–computer interaction (HCI) and affective computing. This chapter will highlight the need for the study of micro-expressions. It would focus on two major approaches to evolve parameters for the automatic detection of human facial expressions—the facial action coding system (FACS) and facial animation parameters (FAPs). Besides summarizing the major developments in the area of psychology and other areas, it would also explore the ways in which neuropsychological studies can contribute to this domain of knowledge.

Keywords

  • Micro-expressions
  • Facial expressions
  • Automatic analysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-81-322-1934-7_13
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-81-322-1934-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2
Fig. 13.3
Fig. 13.4

References

  • Aleksic, P. S., & Katsaggelos, A. K. (2006). Automatic facial expression recognition using facial animation parameters and multistream HMMs. IEEE Transaction Information Forensics and Security, 1, 3–11.

    CrossRef  Google Scholar 

  • Anderson, K., & McOwen, P. W. (2006). A real-time automated system for recognition of human facial expressions. IEEE Transaction Systems Man and Cybernetics Part B, 36, 96–105.

    CrossRef  Google Scholar 

  • Bachorowski, J. A. (1999). Vocal expression and perception of emotion. Current Directions in Psychological Science, 8, 53–57.

    CrossRef  Google Scholar 

  • Baron-Cohen, S., Riviere, A., Fukushima, M., French, D., Hadwin, J., Cross, P., et al. (1996). Reading the mind in the face: A cross-cultural and developmental study. Visual Cognition, 3, 39–59.

    CrossRef  Google Scholar 

  • Bartlett, M. S., Littlewort, G., Fasel, I., & Movellan, R. (2003). Real time face detection and facial expression recognition: Development and application to human computer interaction. Proceedings of CVPR Workshop on Computer Vision and Pattern Recognition for Human-Computer Interaction. Retrieved from http://mplab.ucsd.edu/~marni/pubs/Bartlett_CVPR_2003.pdf.

  • Bhushan, B. (2006). A half gateway to the whole: Evidence from face study. Gestalt Theory, 28, 308–315.

    Google Scholar 

  • Bhushan, B. (2007). Subjective analysis of facial expressions: Inputs from behavioural research for automated systems. Unpublished project report INI-IITK-20060049, Indian Institute of Technology, Kanpur.

    Google Scholar 

  • Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115–147.

    PubMed  CrossRef  Google Scholar 

  • Bourel, F., Chibelushi, C. C. & Low, A. A. (2001). Recognition of facial expressions in the presence of occlusion. Proceedings of the Twelfth British Machine Vision Conference, 1, 213–222.

    Google Scholar 

  • Bradley, M. M., & Lang, P. J. (2000). Measuring emotion: Behavior, feeling, and physiology. In R. D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion (pp. 242–276). New York: Oxford University Press.

    Google Scholar 

  • Bucy, E. P. (2000). Emotional and evaluative consequences of inappropriate leader displays. Communication Research, 27, 194–226.

    CrossRef  Google Scholar 

  • Bucy, E. P., & Bradley, S. D. (2004). Presidential expressions and viewer emotion: Counterempathic responses to televised leader displays. Social Sciences Information, 43, 59–94.

    CrossRef  Google Scholar 

  • Bullock, M., & Russell, J. (1984). Preschool children’s interpretation of facial expressions of emotion. International Journal of Behavioural Development, 7, 193–214.

    CrossRef  Google Scholar 

  • Bullock, M., & Russell, J. (1986). Concepts of emotion in developmental psychology. In C. Izard & P. Read (Eds.), Measuring emotions in infants and children (Vol. 2, pp. 203–237). Cambridge University Press: Cambridge.

    Google Scholar 

  • Cohn, J. F., Ambadar, Z., & Ekman, P. (2007). Observer-based measurement of facial expression with the Facial Action Coding System. In J. A. Coan & J. B. Allen (Eds.), The handbook of emotion elicitation and assessment, Series in Affective Science. Oxford University Press (pp. 203–221). New York: Oxford.

    Google Scholar 

  • Darwin, C. (1872). The expression of emotion in man and animals. New York: Oxford University Press.

    CrossRef  Google Scholar 

  • De la Torre, F., Yacoob, Y., & Davis, L. (2000). A probabilistic framework for rigid and non-rigid appearance based tracking and recognition. International conference on automatic face and gesture recognition, pp. 491–498.

    Google Scholar 

  • Ekman, P. (1973). Cross-cultural studies of facial expression. In P. Ekman (Ed.), Darwin and facial expression: A century of research in review (pp. 169–222). New York: Academic Press.

    Google Scholar 

  • Ekman, P. (1992a). An argument for basic emotions. Cognition and Emotion, 6, 169–200.

    CrossRef  Google Scholar 

  • Ekman, P. (1992b). Facial expressions of emotions: an old controversy and new findings. Philosophical Transactions of the Royal Society, B335, 63–69

    Google Scholar 

  • Ekman, P. (1999). Basic emotions. In T. Dalgleish & M. J. Power (Eds.), Handbook of cognition and emotion (pp. 45–60). New York: Wiley.

    Google Scholar 

  • Ekman, P. (2001). Telling lies: Clues to deceit in the marketplace, politics and marriage (3rd ed.). New York: W. W. Norton and Company.

    Google Scholar 

  • Ekman, P. (2003). Emotions revealed (2nd ed.). New York: Times Books.

    Google Scholar 

  • Ekman, P. (2009). Lie catching and microexpressions: The Philosophy of Deception. Oxford: Oxford University Press.

    Google Scholar 

  • Ekman, P., & Friesen, W. V. (1974). Nonverbal behavior and psychopathology. In R. J. Friedman & M. Katz (Eds.), The psychology of depression: contemporary theory and research (pp. 3–31). Washington, D. C: Winston and Sons.

    Google Scholar 

  • Ekman, P., & Friesen, W. V. (1975). Unmasking the face: A guide to recognizing emotions from facial clues. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Ekman, P., & Friesen, W. V. (1978). Manual for the facial action coding system. San Francisco: Consulting Psychologists Press.

    Google Scholar 

  • Ekman, P., & Friesen, W. V. (2003). Unmasking the face. Cambridge, MA: Malor Books.

    Google Scholar 

  • Ekman, P., Friesen, W. V., O’Sullivan, M., Chan, A., Diacoyanni-Tarlatzis, I., Heider, K., et al. (1987). Universals and cultural differences in the judgments of facial expressions of emotion. Journal of Personality and Social Psychology, 53, 712–717.

    PubMed  CrossRef  Google Scholar 

  • Endres, J., & Laidlaw, A. (2009). Micro-expression recognition training in medical students: A pilot study. BMC Medical Education, 9, 1–6.

    CrossRef  Google Scholar 

  • Essa, I., & Pentland, A. (1995). Facial expression recognition using a dynamic model and motion energy. Proceedings of 5th International conference on computer vision, pp. 360–367.

    Google Scholar 

  • Esteves, F., & Ohman, A. (1993). Masking the face: Recognition of emotional facial expressions as a function of the parameters of backward masking. Scandinavian Journal of Psychology, 34, 1–18.

    PubMed  CrossRef  Google Scholar 

  • Farah, M. J., Wilson, K. D., Drain, M., & Tanaka, J. N. (1998). What is ‘special’ about facial perception? Psychological Review, 105, 482–498.

    PubMed  CrossRef  Google Scholar 

  • Fasel, B., & Luttin, J. (2003). Automatic facial expression analysis: A survey. Pattern Recognition, 36, 259–275.

    CrossRef  Google Scholar 

  • Frank, M. G., Herbasz, M., Sinuk, K., Keller, A., & Nolan, C. (2009). I see how you feel: Training laypeople and professionals to recognize fleeting emotions. International Communication Association, Sheraton New York City. Retrieved from http://www.allacademic.com/meta/p15018_index.html.

  • Gray, J. A. (1994). Three fundamental emotion systems. In P. Ekman & R. J. Davidson (Eds.), The nature of emotion: Fundamental questions (pp. 243–247). New York: Oxford University Press.

    Google Scholar 

  • Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Reviews Neuroscience, 2, 685−694.

    Google Scholar 

  • Gray, J. A. (1994). Three fundamental emotion systems. In P. Ekman & R. J. Davidson (Eds.): The nature of emotion: Fundamental questions (pp. 243-247). New York: Oxford University Press.

    CrossRef  Google Scholar 

  • Haggard, E. A., & Isaacs, K. S. (1966). Micro-momentary facial expressions as indicators of ego mechanisms in psychotherapy. In L. A. Gottschalk & A. H. Auerbach (Eds.), Methods of research in psychotherapy (pp. 154–165). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Haidt, J., & Keltner, D. (1999). Culture and facial expression: Open-ended methods find more expressions and a gradient of recognition. Cognition and Emotion, 13, 225–266.

    CrossRef  Google Scholar 

  • Hu, C., Chang, Y., Feris, R. & Turk, M. (2004). Manifold based analysis of facial expression. Proceedings of IEEE Workshop on Face Processing in Video, Washington, DC.

    Google Scholar 

  • Izard, C. E. (1971). The face of emotion. New York: Meridith Corporation.

    Google Scholar 

  • Izard, C. E. (1991). The psychology of emotions. New York: Plenum Press.

    CrossRef  Google Scholar 

  • Kaiser, S., & Wehrle, T. (2001). Facial expressions as indicators of appraisal processes. In K. R. Scherer, A. Schorr, & T. Johnstone (Eds.), Appraisal processes in emotions: Theories, methods, research (pp. 285–300). New York: Oxford University Press.

    Google Scholar 

  • Kanade, T., Cohn, J., & Tian, Y. (2000). Comprehensive database for facial expression analysis. Proceedings of the IEEE International Conference: Face and Gesture Recognition (AFGR '00), 46–53.

    Google Scholar 

  • Keil, A., Moratti, S., Sabatinelli, D., Bradley, M. M., & Lang, P. J. (2005). Additive effects of emotional content and spatial selective attention on electrocortical facilitation. Cerebral Cortex, 15, 1187–1197.

    PubMed  CrossRef  Google Scholar 

  • Kilts, C. D., Egan, G., Gideon, D. A., Ely, T. D., & Hoffman, J. M. (2003). Dissociable neural pathways are involved in the recognition of emotion in static and dynamic facial expressions. Neuroimage, 18, 156–168.

    PubMed  CrossRef  Google Scholar 

  • Kinsbourne, M., & Bemporad, B. (1984). Lateralization of emotion: A model and the evidence. In N. Fox & R. Davidson (Eds.), The psychobiology of affective development (pp. 259–291). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Kotsia, I., Buciu, I., & Pitas, I. (2008). An analysis of facial expression recognition under partial facial image occlusion. Image and Vision Computing, 26, 1052–1067.

    CrossRef  Google Scholar 

  • Kotsia, I., & Pitas, I. (2007). Facial expression recognition in image sequences using geometric deformation features and support vector machines. IEEE Transaction Image Processing, 16, 172–187.

    CrossRef  Google Scholar 

  • Lang, P. J. (1995). The emotion probe: Studies of motivation and attention. American Psychologist, 50, 372–385.

    PubMed  CrossRef  Google Scholar 

  • Larsen, J. T., McGraw, A. P., & Cacioppo, J. T. (2001). Can people feel happy and sad at the same time? Journal of Personality and Social Psychology, 81, 684–696.

    PubMed  CrossRef  Google Scholar 

  • Larsen, J. T., Norris, C. J., & Cacioppo, J. T. (2003). Effects of positive and negative affect on electromyographic activity over zygomaticus major and corrugator supercilii. Psychophysiology, 40, 776–785.

    PubMed  CrossRef  Google Scholar 

  • Lazarus, R. S. (1991). Emotion and adaptation. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Lee, C., & Elgammal, A. (2005). Facial expression analysis using nonlinear decomposable generative models. IEEE International Workshop on Analysis and Modeling of Faces and Gestures, pp. 17–31.

    Google Scholar 

  • Little, A. C., Burriss, R. P., Jones, B. C., & Roberts, S. C. (2007). Facial appearance affects voting decisions. Evolution and Human Behavior, 28, 18–27.

    CrossRef  Google Scholar 

  • Manohar, V., Shreve, M., Goldgof, D., & Sarkar, S. (2008). Finite element modeling of facial deformation in videos for computing strain pattern. 19th International Conference on Pattern Recognition, pp. 1–4.

    Google Scholar 

  • Manohar, V., Zhang, Y., Goldgof, D., & Sarkar, S. (2007). Facial strain pattern as a soft forensic evidence. Proceedings of the 8 th IEEE workshop on Applications of Computer Vision, p. 42.

    Google Scholar 

  • Matsumoto, D., & Hwang, H. S. (2011). Judgment of profile views of universal facial expressions of emotion. Emotion, 11, 1223–1229.

    PubMed  CrossRef  Google Scholar 

  • Matsumoto, D., LeRoux, J. A., Wilson-Cohn, C., Raroque, J., Kooken, K., Ekman, P., et al. (2000). A new test to measure emotion recognition ability: Matsumoto and Ekman’s Japanese and Caucasian Brief Affect Recognition Test (JACBART). Journal of Nonverbal Behavior, 24, 179–209.

    CrossRef  Google Scholar 

  • Michalson, L., & Lewis, M. (1985). What do children know about emotions and when do they know it? In M. Lewis & C. Saarni (Eds.), The socialization of emotions (pp. 117–140). London: Plenum Press.

    CrossRef  Google Scholar 

  • Milders, M., Sahraie, A., & Logan, S. (2008). Minimum presentation time for masked facial expression discrimination. Cognition and Emotion, 22, 63–82.

    CrossRef  Google Scholar 

  • Morris, D. (1977). Manwatching: A field guide to human behavior. New York: Abrams.

    Google Scholar 

  • Pandzic, I. S., & Forchheimer, R. (2002). MPEG-4 facial animation: The standard, implementation and applications. New Jersey: Wiley.

    Google Scholar 

  • Panksepp, J. (2007). Neurologizing the psychology of affects: How appraisal-based constructivism and basic emotion theory can coexist. Perspectives on Psychological Science, 2, 281–295.

    CrossRef  Google Scholar 

  • Pantic, M., & Patras, I. (2004). Detecting facial actions and their temporal segments in nearly frontal-view face image sequences. Proceedings of IEEE conference on Systems, Man and Cybernetics, 4, 3358–3363.

    Google Scholar 

  • Pardas, M., & Bonafonte, A. (2002). Facial animation parameters extraction and expression recognition using Hidden Markov Models. Signal Processing: Image Communication, 17, 675–688.

    Google Scholar 

  • Parrott, W. G. (2000). Emotions in social psychology. Philadelphia: Psychology Press.

    Google Scholar 

  • Pfister, T., Li, X., Zhao, G., & Pietikäinen, M. (2011). Recognizing spontaneous facial micro-expressions. Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 1449–1456.

    Google Scholar 

  • Polikovsky, S., Kameda, Y., & Ohta, Y. (2009). Facial micro-expressions recognition using high speed camera and 3D-gradients descriptor. Conference on imaging for crime detection and prevention, 6.

    Google Scholar 

  • Porter, S., & Brinke, L. (2008). Reading between the lies: Identifying concealed and falsified emotions in universal facial expressions. Psychological Science, 19, 508–514.

    PubMed  CrossRef  Google Scholar 

  • Pourtois, G., Grandjean, D., Sander, D., & Vuilleumier, P. (2004). Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cerebral Cortex, 14, 619–633.

    PubMed  CrossRef  Google Scholar 

  • Raichle, M. E., & Gusnard, D. A. (2005). Intrinsic brain activity sets the stage for expression of motivated behavior. Journal of Comparative Neurology, 493, 167–176.

    PubMed  CrossRef  Google Scholar 

  • Reuter-Lorenz, P., & Davidson, R. J. (1981). Differential contributions of the two cerebral hemispheres for perception of happy and sad faces. Neuropsychologia, 19, 609–614.

    PubMed  CrossRef  Google Scholar 

  • Rinn, W. E. (1984). The neuropsychology of facial expression: A review of the neurological and psychological mechanisms for producing facial expressions. Psychological Bulletin, 95, 52–77.

    PubMed  CrossRef  Google Scholar 

  • Rothwell, J., Bandar, Z., O’shea, J., & Mclean, D. (2006). Silent talker: A new computer-based system for the analysis of facial cues to deception. Applied Cognitive Psychology, 20, 757–777.

    CrossRef  Google Scholar 

  • Russell, J. A. (1980). A circumflex model of affect. Journal of Personality and Social Psychology, 39, 1161–1178.

    CrossRef  Google Scholar 

  • Scherer, K. R. (1984). On the nature and function of emotion: A component process approach. In K. R. Scherer & P. Ekman (Eds.), Approaches to emotion (pp. 293–318). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Sebe, N., Lew, M. S., Sun, Y., Cohen, I., Gevers, T., & Huang, T. S. (2007). Authentic facial expression analysis. Image and Vision Computing, 25, 1856–1863.

    CrossRef  Google Scholar 

  • Shreve, M., Godavarthy, S., Manohar, V., Goldgof, D., & Sarkar, S. (2009). Towards macro- and micro-expressions\ spotting in video using strain patterns. Applications of Computer Vision (WACV), pp. 1–6.

    Google Scholar 

  • Silberman, E. K., & Weingartner, H. (1986). Hemispheric lateralization of functions related to emotion. Brain and Cognition, 5, 322–353.

    PubMed  CrossRef  Google Scholar 

  • Smiley, P., & Huttenlocher, J. (1989). Young children’s acquisition of emotion concepts. In C. Saarni & P. Harris (Eds.), Children’s understanding of emotion (pp. 27–79). Cambridge: Cambridge University Press.

    Google Scholar 

  • Smith, C. A., & Ellsworth, P. C. (1985). Patterns of cognitive appraisal in emotion. Journal of Personality and Social Psychology, 48, 813–838.

    PubMed  CrossRef  Google Scholar 

  • Stewart, P. A., Waller, B. M., & Schubert, J. N. (2009). Presidential speechmaking style: Emotional response to micro-expressions of facial affect. Motivation and Emotion, 33, 125–135.

    CrossRef  Google Scholar 

  • Tellegen, A., Watson, D., & Clark, L. A. (1999). On the dimensional and hierarchical structure of affect. Psychological Science, 10, 297–303.

    CrossRef  Google Scholar 

  • Todorov, A., Mandisodza, A. N., Goren, A., & Hall, C. C. (2005). Inferences of competence from faces predict election outcomes. Science, 308, 1623–1626.

    PubMed  CrossRef  Google Scholar 

  • Van Gelder, R. S., & Van Gelder, L. (1990). Facial expression and speech: Neuroanatomical considerations. International Journal of Psychology, 25, 141–155.

    CrossRef  Google Scholar 

  • Wang, J., & Yin, L. (2007). Static topographic modeling for facial expression recognition and analysis. Computer Vision and Image Understanding, 108, 19–34.

    CrossRef  Google Scholar 

  • Warren, G., Schertler, E., & Bull, P. (2009). Detecting deception from emotional and unemotional cues. Journal of Nonverbal Behavior, 33, 59–69.

    CrossRef  Google Scholar 

  • Williams, L. M., Liddell, B. J., Rathjen, J., Brown, K. J., Gray, J., Phillips, M., et al. (2004). Mapping the time course of nonconscious and conscious perception of fear: An integration of central and peripheral measures. Human Brain Mapping, 21, 64–74.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Braj Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Bhushan, B. (2015). Study of Facial Micro-expressions in Psychology. In: Mandal, M., Awasthi, A. (eds) Understanding Facial Expressions in Communication. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1934-7_13

Download citation