Skip to main content

Improvements in Adjuvants for New-Generation Vaccines

  • Chapter
  • First Online:
Translational Research in Environmental and Occupational Stress
  • 648 Accesses

Abstract

Over the last decade, extensive research for development of new vaccine adjuvants is being carried out. Present generation vaccines, particularly those based on recombinant proteins and DNA, are not only less reactogenic and also less immunogenic. Therefore, there is an urgent need for the development of new and improved vaccine adjuvants. Many novel adjuvants have been cleared for license, and many are in late stages of clinical trials. Recent investigations in innate immunity have offered new insights into immunostimulatory actions of adjuvants and have facilitated a more rational selection of adjuvants. Despite the impressive response of approved adjuvants in generating immunity against pathogens, there remains a need for improved adjuvants that enhance strong T-cell immunity and protective antibody response. The discovery of more potent adjuvants will also allow engineering of vaccines against infections that do not naturally elicit protective immunity. A logical approach to the development of new and more effective vaccine adjuvants requires a better understanding of the action of adjuvant-antigen formulations. Here, we discuss these advances and the need for better adjuvant development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alving CR (1993) Lipopolysaccharide, lipid A and liposomes containing lipid A as immunologic adjuvants. Immunobiol 187:430–446

    CAS  Google Scholar 

  2. Alving CR (2002) Design and selection of vaccine adjuvants: animal models and human trials. Vaccine 20:S56–S64

    PubMed  CAS  Google Scholar 

  3. Alving CR et al (1993) Novel adjuvant strategies for experimental malaria and AIDS vaccines. Ann N Y Acad Sci 690:265–275

    PubMed  CAS  Google Scholar 

  4. Alving CR, Glass M, Detrick B (1992) Summary: adjuvants/clinical trials working group. AIDS Res Hum Retroviruses 8:1427–1430

    PubMed  CAS  Google Scholar 

  5. Alving CR, Koulchin V, Glenn GM, Rao M (1995) Liposomes as carriers of peptide antigens: induction of antibodies and cytotoxic T lymphocytes to conjugated and unconjugated peptides. Immunol Rev 145:5–31

    PubMed  CAS  Google Scholar 

  6. Aprile MA, Wardlaw AC (1966) Aluminum compounds as adjuvants for vaccines and toxoids in man: a review. Can J Public Health 57(8):343–360

    PubMed  CAS  Google Scholar 

  7. Audibert FM, Lise LD (1993) Adjuvants: current status, clinical perspectives and future prospects. Trends Pharmacol Sci 14:174–178

    PubMed  CAS  Google Scholar 

  8. Awate S et al (2012) Activation of adjuvant core response genes by the novel adjuvant PCEP. Mol Immunol 51:292–303

    PubMed  CAS  Google Scholar 

  9. Awate S, Babiuk A, Mutwiri G (2013) Mechanisms of action of adjuvants. Front Immunol 4(114):1–10. doi:10.3389/fimmu.2013.00114

    Google Scholar 

  10. Baylor NW, Egan W, Richman P (2002) Aluminum salts in vaccines- US perspective. Vaccine 20:S18–S23

    PubMed  CAS  Google Scholar 

  11. Beveridge T, Li TS, Oomah BD, Smith A (1999) Sea buckthorn products : manufacture and composition. J Agric Food Chem 47(9):3480–3488

    PubMed  CAS  Google Scholar 

  12. Bode C, Zhao G, Steinhagen F et al (2011) CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 10(4):499–511

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Bojang KA et al (2001) Efficacy of RTS, S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. The Lancet 358:1927–1934

    CAS  Google Scholar 

  14. Bojang KA et al (2005) Safety and immunogenicity of RTS, S/AS02A candidate malaria vaccine in Gambian children. Vaccine 23:4148–4157

    PubMed  CAS  Google Scholar 

  15. Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33:492–503

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Cooper MA et al (2009) Cytokine induced memory-like natural killer cells. Proc Natl Acad Sci U S A 106:1915–1919

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Cooper PD (1994) The selective induction of different immune responses by vaccine adjuvants. In: Ada GL (ed) Strategies in vaccine design. Landes, Austin, pp 125–158

    Google Scholar 

  18. Cox JC, Coulter AR (1997) Adjuvants-a classification and review of their modes of action. Vaccine 15:248–256

    PubMed  CAS  Google Scholar 

  19. Davenport FM (1968) Seventeen years experience with mineral oil adjuvant influenza virus vaccines. Ann Allergy 26:288–292

    PubMed  CAS  Google Scholar 

  20. Davies MN et al (2009) Toward the discovery of vaccine adjuvants: coupling in silico screening and in vitro analysis of antagonist binding to human and mouse CCR4 receptors. PLoS One 4(11):e8084: 1-12. PMCID-PMC2787246

    PubMed  PubMed Central  Google Scholar 

  21. Davis ID et al (2004) Recombinant NY-ESO-1protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4+ and CD8+ T cell responses in humans. Proc Natl Acad Sci U S A 101:10697–10702

    PubMed  CAS  PubMed Central  Google Scholar 

  22. De Gregorio E, Caproni E, Ulmer JB (2013) Vaccine adjuvant: mode of action. Front Immunol 4:214. doi:10.3389/fimmu.2013.00214. PMCID: PMC3728558

    PubMed  PubMed Central  Google Scholar 

  23. Didierlaurent AM et al (2009) AS04, an aluminum salt-and TLR4 agonist- based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol 183:6186–6197

    PubMed  CAS  Google Scholar 

  24. Dubensky TW, Kanne DB Jr, Leong ML (2013) Rational, progress and development of vaccine utilizing STING- activating cyclic dinucleotide adjuvants. Ther Adv Vaccines 1(4):131–143. doi:10.1177/2051013613501988

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Dupuis M et al (2001) Immunization with the adjuvant MF59 induces macrophage trafficking and apoptosis. Eur J Immunol 31:2910–2918

    PubMed  CAS  Google Scholar 

  26. Edelman R (1980) Vaccine adjuvants. Rev Infect Dis 2:370–383

    PubMed  CAS  Google Scholar 

  27. Eisenbarth SC et al (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminum adjuvants. Nature 453:1122–1126

    PubMed  CAS  Google Scholar 

  28. Ellebedy AH et al (2011) Inflammasome-independent role of the apoptosis-associated speck-like protein containing CARD (ASC) in the adjuvant effect of MF59. Proc Natl Acad Sci U S A 108:2927–2932

    PubMed  CAS  PubMed Central  Google Scholar 

  29. EMEA- Guidelines on adjuvants in vaccine for human use, 1/2005 and explanatory note on immunomodulators, 7/2006. Accessed at http://www.emea.europa.eu/pdfs/human/vwp/13471604en.pdf

  30. Exley C et al (2009) A role for the body burden of aluminum in vaccine – associated macrophagic myofasciitis and chronic fatigue syndrome. Med Hypotheses 72:135–139

    PubMed  CAS  Google Scholar 

  31. Fernandez J et al (2000) Randomized trial of the immunogenicity of fractional dose regimens of PRP-T Haemophilus influenzae type b conjugate vaccine. Am J Trop Med Hyg 62(4):485–490

    PubMed  CAS  Google Scholar 

  32. Focetria®, the Novartis pandemic influenza vaccine, receives European union approval, 2007. Accessed 12th Oct 2007, at http://novartisvaccine.com/press-room/news/20070508focetria.shtml

  33. Fraser CK et al (2007) Improving vaccines by incorporating immunological coadjuvants. Expert Rev Vaccines 6:559–578

    PubMed  CAS  Google Scholar 

  34. Freund J (1956) The mode of action of immunologic adjuvants. Bibl Tuberc 10:130–148

    PubMed  Google Scholar 

  35. Freytag LC, Clements JD (2005) Mucosal adjuvants. Vaccine 23:1804–1813

    PubMed  CAS  Google Scholar 

  36. Galli G et al (2009) Adjuvanted H5N1 vaccine induces early CD4+ T cell response that predicts long-term persistence of protective antibody levels. Proc Natl Acad Sci U S A 106:3877–3882

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Galli G, Hancock K, Hoschler K, DeVos J et al (2009) Fast rise of broadly cross-reactive antibodies after boosting long-lived human memory B cells primed by an MF59 adjuvanted prepandemic vaccine. Proc Natl Acad Sci 106:7962–7967

    Google Scholar 

  38. Ganju L et al (2005) Anti-inflammatory activity of Seabuckthorn (Hippophae rhamnoides) leaves. Int Immunopharmacol 5:1675–1684

    PubMed  CAS  Google Scholar 

  39. Gaucher D et al (2008) Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J Exp Med 205:3119–3131

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Gavin AL et al (2006) Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314:1936–1938

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Germain RN (2010) Vaccines and the future of human immunology. Immunity 33:441–450

    PubMed  CAS  Google Scholar 

  42. Ghochikyan A et al (2006) Prototype Alzheimer’s disease epitope vaccine induced strong Th2-type anti-Aβ antibody response with Alum to Quil A adjuvant switch. Vaccine 24(13):2275–2282. doi:10.1016/j.vaccine.2005.11.039.PMC 2081151. PMID: 16368167

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Glenn GM, Taylor DN, Lix FS et al (2000) Transcutaneous immunization a human vaccine delivery strategy using a patch. Nat Med 6:1403–1406

    PubMed  CAS  Google Scholar 

  44. Gluck R (1999) Adjuvant activity of immunopotentiating reconstituted influenza virosomes (IRIVs). Vaccine 17(13–14):1782–1787

    PubMed  CAS  Google Scholar 

  45. Glück R, Mischler R, Brantschen S et al (1992) Immunopotentiating reconstituted influenza virus virosome vaccine delivery system for immunization against hepatitis A. J Clin Invest 90(6):2491–2495. doi:10.1172/JCI116141

    PubMed  PubMed Central  Google Scholar 

  46. Goldenthal K et al (1993) Safety evaluation of vaccine adjuvants. NCVDG meeting working group. AIDS Res Hum Retroviruses 9:S47–S51

    Google Scholar 

  47. Golding B (1991) Cytokine regulation of humoral immune responses. In: Sprigs DR, Koff WC (eds) Topics in vaccine adjuvant research. CRC press, Boca Raton, pp 25–37

    Google Scholar 

  48. Gonzalez AM, Nguyen TV, Azevedo MSP et al (2004) Antibody response to human rotavirus (HRV) in gnotobiotic pigs following a new prime/vaccine boost strategy using oral attenuated HRV priming and intranasal VP2/6 rotavirus like particle (VLP) boosting with ISCOM. Clin Exp Immunol 135:361–372

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Guidance for Industry – Clinical Data Needed to Support the Licensure of Pandemic Influenza Vaccines (2007a). Accessed at http://www.fda.gov/cber/gdlns/panfluvac.pdf

  50. Guidance for Industry – Clinical Data Needed to Support the Licensure of Trivalent Inactivated Influenza Vaccines (2007b). Accessed at http://www.fda.gov/cber/gdlns/trifluvac.pdf

  51. Gupta RK et al (1993) Adjuvants- a balance between toxicity and adjuvanticity. Vaccine 11(3):293–306

    PubMed  CAS  Google Scholar 

  52. Gupta RK, Rost BE, Relyveld E, Siber GR (1995) Adjuvant properties of aluminum and calcium compounds. In: Powell MF, Newman MJ (eds) Vaccine design: the subunit and adjuvant approach. Plenum Press, New York, pp 229–248

    Google Scholar 

  53. Gupta RK, Siber GR (1995) Adjuvants for human vaccines-current status, problems and future prospects. Vaccine 13:1263–1276

    PubMed  CAS  Google Scholar 

  54. Guy B (2007) The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol 5:505–517

    PubMed  CAS  Google Scholar 

  55. Hammad H et al (2010) Inflammatory dendritic cells–not basophils–are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med 207:2097–2111

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Hardegree MC, Pittman M, Maloney CJ (1972) Influence of mouse strain on the assayed potency (Unitage) of tetanus toxoid. Appl Microbiol 24(1):120–126

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Hilleman MR (1966) Critical appraisal of emulsified oil adjuvants applied to viral vaccine. Prog Med Virol 8:131–182

    PubMed  CAS  Google Scholar 

  58. Hoebe K, Janssen E, Beutler BF (2004) The interface between innate and adaptive immunity. Nat Immunol 5:971–974

    PubMed  CAS  Google Scholar 

  59. Hoelscher MA, Garg S, Bangari DS et al (2006) Development of adenoviral-vector-based pandemic influenza vaccine against antigenically distinct human H5N1 strains in mice. Lancet 367(9509):475–481

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Hoelscher MA, Jayashankar L, Garg S et al (2007) New pre-pandemic influenza vaccines: an egg- and adjuvant-independent human adenoviral vector strategy induces long-lasting protective immune responses in mice. Clin Pharmacol Ther 82(6):665–671

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Huleatt JW, Jacobs AR, Tang J et al (2007) Vaccination with recombinant fusion proteins incorporating Toll-like receptor ligands induces rapid cellular and humoral immunity. Vaccine 25:763–775

    Google Scholar 

  62. Hutchison S et al (2012) Antigen depot is not required for alum adjuvanticity. The FASEB J 26:1272–1279

    CAS  Google Scholar 

  63. Jain M et al (2008) Effect of Hippophae rhamnoides leaf extract against Dengue virus infection in human blood–derived macrophages. Phytomedicine 15(10):793–799. doi:10.1016/J.phymed.2008.04.017, Epub 2008 June 30

    PubMed  CAS  Google Scholar 

  64. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54:1–13

    PubMed  CAS  Google Scholar 

  65. Jordan MB et al (2004) Promotion of B cell immune responses via an alum-induced myeloid cell population. Science 304:1808–1810

    PubMed  CAS  Google Scholar 

  66. Kashala O et al (2002) Safety, tolerability and immunogenicity of new formulations of the Plasmodium falciparum malaria peptide vaccine SPf66 combined with the immunological adjuvant QS-21. Vaccine 20(17–18):2263–2277

    PubMed  CAS  Google Scholar 

  67. Kasturi SP et al (2011) Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470:543–547

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Kenney RT, Cross AS (2010) Adjuvants for the future. In: Levine MM, Dougan G, Good MF, Liu MA, Nabel GJ, Nataro JP, Rappuoli R (eds) New generation vaccines. Informa Healthcare USA, Inc., New York, pp 250–262

    Google Scholar 

  69. Khurana S, Chearwae W, Castellino F et al (2010) Vaccines with MF59 adjuvant expand the antibody repertoire to target protective sites of pandemic avian H5N1 influenza virus. Sci Transl Med 2:15ra15–15ra15

    Google Scholar 

  70. Klinman DM (2003) CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 2(2):305–315

    PubMed  CAS  Google Scholar 

  71. Kool M, Soullie T, van Nimwegen M et al (2008) Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med 205:869–882

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Lagos R, Valenzuela MT, Levine OS et al (1998) Economisation of vaccination against Haemophilus influenzae type b: a randomised trial of immunogenicity of fractional-dose and two-dose regimens. The Lancet 351(9114):1472–1476

    Google Scholar 

  73. Lavelle EC, Jarnicki A, McNeela E et al (2004) Effects of cholera toxin on innate and adaptive immunity and its application as an immunomodulatory agent. J Leukoc Biol 75:756–763

    PubMed  CAS  Google Scholar 

  74. Lavelle EC, McGuipk P, Mills KHG (2004) Molecules of infectious agents as immunomodulatory drugs. Curr Top Med Chem 4:499–508

    PubMed  CAS  Google Scholar 

  75. Leibundgut-Landmann S, Groβ O, Robinson MJ et al (2007) Syk-and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce IL17. Nat Immunol 8:630–638. Pubmed:17450144

    Google Scholar 

  76. Leroux-Roles I, Roman F, Forgus S et al (2010) Priming with AS03 A-adjuvanted H5N1 influenza vaccine improves the kinetics, magnitude and durability of the immune response after a heterologous booster vaccination: an open non-randomised extension of a double- blind randomised primary study. Vaccine 28:849–857

    Google Scholar 

  77. Li H, Willingham SB, Ting JP, Re F (2008) Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol 181:17–21

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Mackay F, Schneider P (2009) Cracking the BAFF code. Nat Rev Immunol 9:491–502

    PubMed  CAS  Google Scholar 

  79. Maraskovsky E, Schnurr M, Wilson NS et al (2009) Development of prophylactic and therapeutic vaccines using the ISCOMATRIX adjuvant. Immunol & Cell Biol 87:371–376

    CAS  Google Scholar 

  80. Martin S, Daniel SL, Rouse BT (1991) Cytokines and regulation of cellular immune responses to viruses. In: Spriggs DR, Koff WC (eds) Topics in vaccine adjuvant research. CRC Press, Boca Raton, pp 39–50

    Google Scholar 

  81. Mata-Haro V, Cekic C, Martin M et al (2007) The vaccine adjuvant Monophosphoryl lipid A as a TRIF- biased agonist of TLR 4. Science 316:1628–1632

    Google Scholar 

  82. Matsuhasi T (1991) Influence of mouse strain on the results of potency test of diphtheria and tetanus toxoid components of D, T, DT and DPT vaccines. In: Manclark CR (ed) Proceeding of an informal consultation on the World Health Organization Requirements for diphtheria, tetanus, pertussis and combined vaccine. Department of Health and Human Services, United States Public Health Service, Bethesda. DHHS Publication No. (FDA) 91-1174, pp 55–58

    Google Scholar 

  83. Valiante NM et al. (2010) New adjuvants for human vaccines. Curr Opin Immunol 22:411–416

    Google Scholar 

  84. McGhe JR, Mestecky J, Dertzbaugh MT et al (1992) The mucosal immune system from fundamental concepts to vaccine development. Vaccine 10:75–88

    Google Scholar 

  85. Metzinger P (1994) Tolerance, danger and the extended family. Annu Rev Immunol 12:991–1045

    Google Scholar 

  86. Moreira LO, Smith AM, Defreitas AA et al (2008) Modulation of adaptive immunity by different adjuvant- antigen combinations in mice lacking Nod2. Vaccine 26:5808–5813

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Morel S, Didierlaurent A, Bourguignon P et al (2011) Adjuvant system AS03 containing α-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 29(13):2461–2473

    Google Scholar 

  88. Mosca F et al (2008) Molecular and cellular signatures of human vaccine adjuvant. Proc Natl Acad Sci U S A 105:10501–10506

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Neefjes JJ, Schumacher TNM, Ploegh HL (1991) Assembly and intracellular transport of major histocompatibility complex molecules. Curr Opin Cell Biol 3:601–609

    PubMed  CAS  Google Scholar 

  90. Nemazee D, Gavin A, Hoebe K, Beutler B (2006) Immunology: toll like receptors and antibody responses. Nature 441:E4. doi:10.1038/nature04875

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Neuzil KM, Jackson LA, Nelson J et al (2006) Immunogenicity and reactogenicity of 1 versus 2 doses of trivalent inactivated influenza vaccine in vaccine-naive 5-8-year-old children. J Infect Dis 194(8):1032–1039

    PubMed  CAS  Google Scholar 

  92. O’Hagan DT, Ott GS, De Gregorio E, Seubert A (2012) The mechanism of action of MF59 – an innately attractive adjuvant formulation. Vaccine 30(29):4341–4348

    PubMed  Google Scholar 

  93. Ohnmacht C et al (2010) Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity 33:364–374

    PubMed  CAS  Google Scholar 

  94. Okubo HY, Saade F, Petrovsky N (2012) Advax™, a polysaccharide adjuvant derived from delta inulin, provides improved influenza vaccine protection through broad-based enhancement of adaptive immune responses. Vaccine 30(36):5373–5381

    Google Scholar 

  95. Padwad Y, Ganju L, Jain M et al (2006) Effect of leaf extract of Seabuckthorn on lipopolysaccharide induced inflammatory response in murine macrophages. Int Immunopharmacol 6(1):46–52

    Google Scholar 

  96. Pashine A, Valiante NM, Ulmer JB (2005) Targeting the innate immune response with improved vaccine adjuvant adjuvants. Nat Med 11(4):S63–S68

    Google Scholar 

  97. Paul WE (2003) Antigen processing and presentation. In: Paul WE (ed) Fundamental immunology, 5th edn. Lippincott Williams & Wilkins Publishers, Philadelphia

    Google Scholar 

  98. Petrovsky N, Aguilar JC (2004) Vaccine adjuvants: current state and future trends. Immunol & Cell Biol 82:488–496

    CAS  Google Scholar 

  99. Pichyangkul S, Gettayacamin M, Miller RS et al (2004) Pre-clinical evaluation of the malaria vaccine candidate P. falciparum MSP1(42) formulated with novel adjuvants or with alum. Vaccine 22:3831–3840

    Google Scholar 

  100. Plotkin SA (2008) Vaccines: correlates of vaccine –induced immunity. Clin Infect Dis 47:401–409

    PubMed  Google Scholar 

  101. Plotkin SA (2010) Correlates of protection induced by vaccination. Clin Vaccine Immunol 17:1055–1065

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Podda A, Del Giudice G (2003) MF59-adjuvanted vaccines: increased immunogenicity with an optimal safety profile. Expert Rev Vaccines 2:197–203

    PubMed  CAS  Google Scholar 

  103. Poovorawan Y, Theamboonlers A, Chumdermpadetsuk S et al (1995) Safety, immunogenicity, and kinetics of the immune response to a single dose of virosome-formulated hepatitis A vaccine in Thais. Vaccine 13(10):891–893

    Google Scholar 

  104. Pulendran B, Ahmed R (2011) Immunological mechanisms of vaccination. Nat Immunol 131(6):509–517

    Google Scholar 

  105. Pulendran B, Powell J, Flavell RA (2010) Modulating vaccine responses with innate immunity. In: Levine MM, Dougan G, Good MF, Liu MA, Nabel GJ, Nataro JP, Rappuoli R (eds) New generation vaccines. Informa Healthcare USA, Inc., New York, pp 183–190

    Google Scholar 

  106. Querec TD, Akondy RS, Lee EK et al (2009) Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10:116–125

    Google Scholar 

  107. Radošević K, Rodriguez A, Mintardjo R et al (2008) Antibody and T-cell responses to a virosomal adjuvanted H9N2 avian influenza vaccine: impact of distinct additional adjuvants. Vaccine 26:3640–3646

    Google Scholar 

  108. Ramon G (1924) Sur la toxine et sur I’ anatoxine diphteriques. Ann Inst Pasteur 38:1–10

    CAS  Google Scholar 

  109. Reed SG, Bertholet S, Coler RN et al (2009) New horizon in adjuvants for vaccine development. Trends Immunol 30(1):23–32

    Google Scholar 

  110. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S et al (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV infection in Thailand. N Engl J Med 361:2209–2220

    Google Scholar 

  111. Rimoldi M, Rescigno M (2005) Uptake and presentation of orally administered antigens. Vaccine 23:1793–1796

    PubMed  CAS  Google Scholar 

  112. Rock KL (1996) A new foreign policy MHC class I molecules, monitor the outside world. Immunol Today 17:130–137

    Google Scholar 

  113. Saenz SA, Noti M, Artis D (2010) Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. Trends Immunol 31:407–413

    PubMed  CAS  Google Scholar 

  114. Sesardic D, Dobbelaer R (2004) European Union regulatory developments for new vaccine adjuvants and delivery systems. Vaccine 22(19):2452–2456

    PubMed  CAS  Google Scholar 

  115. Seubert A et al (2011) Adjuvanticity of the oil-in- water emulsion MF59 is independent of Nlrp3 inflammasome but requires the adaptor protein MyD88. Proc Natl Acad Sci U S A 108:11169–11174

    PubMed  CAS  PubMed Central  Google Scholar 

  116. Shenderov K (2010) Inflammasome-dependent IL-1 {beta} production is critical for complete Freund’s adjuvant-induced helper T cell polarization. J Immunol 184:136–144

    Google Scholar 

  117. Shi Y, Evans IE, Rock KL (2003) Molecular identification of danger signal that alerts the immune system to dying cells. Nature 425:516–521

    PubMed  CAS  Google Scholar 

  118. Spriggs DR, Koff WC (1991) Topics in vaccine adjuvant research. CRC Press, pp 119–136

    Google Scholar 

  119. Stewart-Tull DES (1989) Recommendations for the assessment of adjuvants (immunopotentiators). In: Gregoriadis G, Allison AC, Poste G (eds) Immunological adjuvants and vaccines. Springer, pp 213–226

    Google Scholar 

  120. Stout R, Gutierrez M, Freeland P et al (2007) Needle-free injections using a spring-powered device for subcutaneous, intramuscular & intradermal injections. Drug Deliv Technol 7(2):40–43

    Google Scholar 

  121. Stuart Harris CH (1969) Adjuvant influenza vaccines. Bull WHO 41:617–621

    PubMed  CAS  Google Scholar 

  122. Su SB, Silver PB, Grajewski RS et al (2005) Essential role of the MyD88 pathway, but nonessential roles of TLRs 2, 4, and 9, in the adjuvant effect promoting Th1-mediated autoimmunity. J Immunol 175:6303–6310

    PubMed  CAS  Google Scholar 

  123. Sun JC, Beilke JN, Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457:557–561

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Tang H, Cao W, Kasturi SP et al (2010) The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol 11:608–617

    Google Scholar 

  125. Tomljenovic L, Shaw CA (2011) Aluminum vaccine adjuvants: are they safe? Curr Med Chem 18(17):2630–2637

    PubMed  CAS  Google Scholar 

  126. Tomljenovic L, Shaw CA (2012) Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations. Lupus 21(2):223–230. doi:10.1177/0961203311430221

    PubMed  CAS  Google Scholar 

  127. Vandepapeliere P, Horsmans Y, Moris P et al (2008) Vaccine adjuvant systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T cell responses against hepatitis B surface antigen in healthy adult volunteers. Vaccine 26:1375–1386

    PubMed  CAS  Google Scholar 

  128. Vogel FR (1995) immunologic adjuvants for modern vaccine formulations. Annals of the New York Academy of Sciences 754:153–160

    Google Scholar 

  129. Wack A, Rappuoli R (2005) Vaccinology at the beginning of the 21st century. Curr Opin Immunol 17:411–418

    PubMed  CAS  Google Scholar 

  130. Wickelgren I (2006) Mouse studies question importance of toll-like receptors to vaccines. Science 314(5807):1859–1860. doi:10.1126/Science.314.5807.1859a. PMID 17185572

    PubMed  CAS  Google Scholar 

  131. Xie Y, Pan H, Sun H et al (2008) A promising balanced Th1 and Th2 directing immunological adjuvant, saponins from the root of Platycodon grandiflorum. Vaccine 26(31):3937–45. doi:10.1016/J.Vaccine.2008.01.061. Epub 2008 May 20

  132. Xu M, Sun X, Tong W (1994) Medical research and development of sea buckthorn. Hippophae 7:32–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilly Ganju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Ganju, L., Singh, D. (2014). Improvements in Adjuvants for New-Generation Vaccines. In: Singh, S., Prabhakar, N., Pentyala, S. (eds) Translational Research in Environmental and Occupational Stress. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1928-6_11

Download citation

Publish with us

Policies and ethics