Skip to main content

FDI and Child Labour

  • Chapter
  • First Online:
Foreign Direct Investment in Developing Countries

Abstract

Concomitant to the disparate empirical evidences on how FDI impinges on the incidence of child labour in the developing world, the first part of this chapter in terms of two simple general equilibrium models with child labour and the informal sector aims at explaining why growth led by foreign capital has failed to lessen the gravity of the problem in some cases, while in general the incidence has declined in the developing countries in the liberalized regime. The latter part of it concentrates in identifying the different channels through which economic liberalization like increased FDI inflow can affect the child labour problem by constructing a three-sector HT-type general equilibrium model with endogenous skill formation. The analysis finds that reduction in poverty is not a necessary condition for improvement of the problem of child labour. FDI can mitigate the gravity of problem and improve welfare of each poor working family that supplies child labour even by raising the return to education and lowering the earning opportunities of children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bonnet (1993), Basu (1999), Basu (2000), Chaudhuri and Gupta (2004) and Chaudhuri and Dwibedi (2006, 2007) also support the view.

  2. 2.

    According to UNCTAD (2008), the average yearly FDI inflows to developing countries increased from nearly $20.6 billion during 1980s to $118 billion during 1990s and then $292 billion during the first eight years of the new millennium. As per UNCTAD (2013), FDI flows to developing countries increased from 637 billions of dollars in 2010 to $703 billion in 2012. See Sects. 1.4 and 3.3 for more details.

  3. 3.

    Empirical evidences suggest that the informal sector units mostly produce intermediate inputs for the formal sector. See, for example, Joshi and Joshi (1976), Bose (1978), Papola (1981) and Romatet (1983). However, there are a few theoretical papers like Grinols (1991), Chandra and Khan (1993) and Gupta (1997), which have formalized the urban informal sector as a sector that produces an internationally traded final commodity.

  4. 4.

    This simplifying assumption rules out the possibility of substitution between the non-traded input and other factors of production in sector 3. See footnote 29, Chap. 5, for its rationale.

  5. 5.

    The substitution axiom emphasizes that adult labour and child labour are substitutes. In other words, it means that adults can do what children do. Some studies presume that there are certain tasks specific to children. Expressions like ‘nimble fingers’ to describe child labour tend to perpetuate this belief. The substitution axiom expresses a contrary view on this. The ‘nimble fingers’ argument, put forward as an excuse by employers, especially in carpet weaving, fails to convince researchers (see Burra (1997) and Weiner (1991)). A careful study of the technology of production involving children by Levison et al. (1998) lends strong support to the substitution axiom. They show that adults in India are as good, if not better, in producing hand-knit carpets as children. So from a purely technical point of view, it is possible to replace child labour with adults. But since adults cost more, firms may be reluctant to make the transition to adults-only labour. This argument is also applicable to girl child labour helping household chores where from a purely technical point of view adult female labour can do what girls do.

  6. 6.

    See Ashagrie (1998) and NSSO (2000).

  7. 7.

    One may go through Swaminathan (1998).

  8. 8.

    Using these figures we find that in India in 1991 the child labour–adult labour ratios in agriculture, (λ C1/λ L1), and nonagricultural informal sector, (λ C2/λ L2), were 1.22 and 0.77, respectively. The difference between these two ratios has, however, narrowed somewhat in 2004–2005 as per calculations based on NSSO (2006) data. See also Chaudhuri and Dwibedi (2006) in this context.

  9. 9.

    See footnote 8.

  10. 10.

    Production in the import-competing sector, apart from capital and labour inputs, requires a non-traded input, per-unit requirement of which is assumed to be technologically fixed. However, labour and capital are substitutes and the production function displays the property of constant returns to scale in these two inputs.

  11. 11.

    In Sect. 8.1, a discussion has been made on the role of poverty behind the widespread existence of child labour in the developing world.

  12. 12.

    See Appendix 8.1 for the mathematical derivations.

  13. 13.

    It may be checked that the results of this section hold for any utility function generating supply function of child labour satisfying these two properties.

  14. 14.

    See Appendix 8.3.

  15. 15.

    These results have been proved in Appendices 8.2, 8.4 and 8.5.

  16. 16.

    In fact, sector 3 expands under the sufficient condition that A 3 ≥ 0. See Appendix 8.5 in this context.

  17. 17.

    This section has been developed following Chaudhuri and Dwibedi (2007).

  18. 18.

    These production activities use very little amount of capital and so we can ignore capital as an input in this sector.

  19. 19.

    See footnote 17 in this context.

  20. 20.

    The use of child labour in sector 3 is legally prohibited, as it is the formal sector of the economy.

  21. 21.

    We assume that W C  > B(E). Otherwise, no child is sent to the job market.

  22. 22.

    It may be checked that the qualitative results of this model hold under different sufficient conditions even if the poorer section of the working class is allowed to consume this commodity.

  23. 23.

    We assume that the rental income from foreign capital is fully repatriated. Therefore, it is not included in Y.

  24. 24.

    See Appendix 8.6 for derivation.

  25. 25.

    Actually, the expression for |λ| is somewhat different which, however, has been simplified to this present form. See Appendix 8.10 in this context.

  26. 26.

    This has been derived in Appendix 8.7.

  27. 27.

    See Appendix 8.8 for derivation of equation (8.34.1).

  28. 28.

    Equations (8.35.1 and 8.35.2) have been derived in Appendix 8.9.

  29. 29.

    A Stolper–Samuelson effect contains an element of Rybczynski effect if the technologies of production are of the variable-coefficient type. This is a well-known result in the theory of international trade.

  30. 30.

    There can arise two cases. Either sector 1 is child labour-intensive and the non-traded sector (sector 2) is adult labour-intensive or vice versa. We consider both the cases here and examine how the effects of different policies on child labour change under different factor intensity conditions.

  31. 31.

    It rules out the possibility of substitution between capital and other factors of production (i.e. adult labour and child labour) in sector 1. Although this is a simplifying assumption, it is not totally unrealistic. For cultivation with HYV seeds frequently used in several areas of developing economies, different inputs like fertilizers, pesticides, herbicides and water are used in recommended doses. In other words, there are complementarities between these inputs and these are not substitutable with labour. See Dasgupta (1977) for a detailed discussion on this aspect. It may, however, be checked that the qualitative results of the model hold under different condition(s) even if we allow substitutability between labour and capital.

  32. 32.

    See Appendix 8.10 for the mathematical proof.

  33. 33.

    This has been proved in Appendix 8.10.

  34. 34.

    This result holds even if the induced adult wage effect is stronger than the two adult labour reallocation effects. In mathematical terms this is expressed as [(I W  + I L )Q 1 ≥ (λ L3/λ K3 − λ L3)].

  35. 35.

    One may find other sufficient conditions incorporating the effective child wage effect.

  36. 36.

    This section is based on Chaudhuri (2011) and Dwibedi and Chaudhuri (2010).

  37. 37.

    W 0 can take two values, W(unskilled wage) and W S(skilled wage), depending on the type of the representative working household.

  38. 38.

    There are informal credit markets in developing countries as a substitute to the missing formal credit market, but they mainly deal with short-term loans. Poor households need long-term credit to be able to compensate for the foregone earnings of their children, which is lacking in these countries. See, for example, Baland and Robinson (2000), Ranjan (1999, 2001) and Jafarey and Lahiri (2002) in this context.

  39. 39.

    This is a simplifying assumption that ignores the existence of non-labour non-school goers.

  40. 40.

    Introduction of uncertainty in securing a skilled job in the second period would be an interesting theoretical exercise. However, the major findings of the model remain unaffected if the probability in finding a high-skill job is given exogenously.

  41. 41.

    This is a marked departure from the Basu and Van (1998) paper that considers an altruistic parent who cares about the well-being of his children and derives disutility from the labour supplied by his offspring.

  42. 42.

    One can, of course, incorporate direct schooling cost without affecting the qualitative results of the model.

  43. 43.

    This assumption of constant capital–output ratio in agricultural sector has also been made in the previous model in a different context. See footnote 31 for the rationale of the assumption.

  44. 44.

    Even if sector 2 is allowed to use child labour, the results of model hold under different sufficient conditions containing terms of relative intensities in which child labour and other two inputs are used in the first two sectors.

  45. 45.

    Even though the capital–output ratio in sector 1 is technologically given, adult labour and child labour are substitutes and the production function displays the constant returns to scale property in these two inputs.

  46. 46.

    It is assumed that the capital stock of the economy consists of both domestic capital and foreign capital, which are perfect substitutes. It may be mentioned that this assumption has been widely used in the theoretical literature on trade and development.

  47. 47.

    See Bhalotra (2002) in this context.

  48. 48.

    This relationship has already been adequately explained in earlier chapters.

  49. 49.

    These results have been derived in Appendix 8.11.

  50. 50.

    See Eq. (5.10.1) and the preceding discussions.

  51. 51.

    Here sectors 2 and 3 use two different types of labour. However, there is one intersectorally mobile input, that is, capital. So, these two sectors cannot be classified in terms of factor intensities as is usually done in the Heckscher–Ohlin–Samuelson model. However, a special type of factor intensity classification in terms of the relative distributive shares of the mobile factor, that is, capital can be made for analytical purposes. The sector in which this share is higher relative to the other may be considered as capital-intensive in a special sense. See Jones and Neary (1984) for details.

  52. 52.

    The proof is available in Appendix 8.12.

  53. 53.

    See Appendix 8.13 for detailed derivations.

  54. 54.

    This result has been proved in Appendix 8.14.

References

  • Ashagrie K (1998) ‘Statistics on child labor and hazardous child labor in brief’, mimeo. Bureau of Labor Statistics, ILO, Geneva

    Google Scholar 

  • Baland J, Robinson JA (2000) Is child labour inefficient? J Polit Econ 108(4):663–679

    Article  Google Scholar 

  • Basu K (1999) Child labour: cause, consequence, and cure, with remarks on international labour standards. J Econ Lit 37(3):1083–1119

    Article  Google Scholar 

  • Basu K (2000) The intriguing relationship between adult minimum wage and child labour. Econ J 110(462):C50–C61

    Article  Google Scholar 

  • Basu K, Van PH (1998) The economics of child labour. Am Econ Rev 88(3):412–427

    Google Scholar 

  • Becker GS (1964) Human capital: a theoretical and empirical analysis, with special reference to education. University of Chicago Press, Chicago

    Google Scholar 

  • Bhalotra S (2002) The impact of economic liberalization on employment and wages in India. ILO, Geneva

    Google Scholar 

  • Bonnet M (1993) Child labour in Africa. Int Labour Rev 132:371–389

    Google Scholar 

  • Bose AN (1978) Calcutta and rural Bengal: small sector symbiosis. Minerva Publications, New Delhi

    Google Scholar 

  • Burra N (1997) Born to work: child labour in India. Oxford University Press, Delhi

    Google Scholar 

  • Chandra V, Khan MA (1993) Foreign investment in the presence of an informal sector. Economica 60:79–103

    Article  Google Scholar 

  • Chaudhuri S (2011) Foreign direct investment, child labour and unemployment of unskilled labour in a dual economy. In: India macroeconomics annual, 2010

    Google Scholar 

  • Chaudhuri S, Dwibedi JK (2006) Trade liberalization in agriculture in developed nations and incidence of child labour in a developing economy (with J.K. Dwibedi). Bull Econ Res 58(2):129–150

    Article  Google Scholar 

  • Chaudhuri S, Dwibedi JK (2007) Foreign capital inflow, fiscal policies and the incidence of child labour in a developing economy. Manch Sch 75(1):17–46

    Article  Google Scholar 

  • Chaudhuri S, Gupta MR (2004) Child labour and trade liberalization in a developing economy. Jap Econ Rev 55(2):201–211

    Google Scholar 

  • Cigno A, Rosati FC, Guarcello L (2002) Does globalisation increase child labour? World Dev 30(9):1579–1589

    Article  Google Scholar 

  • Dasgupta B (1977) Agrarian change and the new technology in India. United Nation Research Institute for Social Development, Geneva

    Google Scholar 

  • Dwibedi JK, Chaudhuri S (2010) Foreign capital, return to education and child labour. Int Rev Econ Financ 19(2):278–286

    Google Scholar 

  • Grinols EL (1991) Unemployment and foreign capital: the relative opportunity cost of domestic labour and welfare. Economica 57:107–121

    Article  Google Scholar 

  • Gupta MR (1997) Foreign capital and informal sector: comments on Chandra and Khan. Economica 64:353–363

    Article  Google Scholar 

  • Harris JR, Todaro MP (1970) Migration, unemployment and development: a two-sector analysis. Am Econ Rev 60:126–142

    Google Scholar 

  • ILO (2002). A future without child labour?. International labour conference, 90th session June 2002, International Labour Office, Geneva

    Google Scholar 

  • Jafarey S, Lahiri S (2002) Will trade sanctions reduce child labour? The role of credit markets. J Dev Econ 68(1):137–156

    Article  Google Scholar 

  • Jones RW, Neary P (1984) Positive theory of international trade. In: Jones RW, Kenen PB (eds) Handbook of development economics, vol 1. North-Holland, Amsterdam

    Google Scholar 

  • Joshi H, Joshi V (1976) Surplus labour and the city: a study of Bombay. Oxford University Press, New Delhi

    Google Scholar 

  • Levison D, Anker R, Ashraf S, Barge S (1998) Is child labor really necessary in India’s carpet industry. In: Anker R, Barge S, Rajagopal S, Joseph MP (eds) Economics of child labor in hazardous industries in India. Hindustan Publishers, New Delhi

    Google Scholar 

  • Neumayer E, Soysa I (2005) Trade openness, foreign direct investment and child labour. World Dev 33(1):43–63

    Article  Google Scholar 

  • NSSO (2000) Report of the Second National Commission on Labour. Ministry of Labour and Employment, Government of India, New Delhi

    Google Scholar 

  • NSSO (2006) Employment and unemployment situation in India 2004–2005. Government of India, Ministry of Statistics and Programme Implementation, New Delhi

    Google Scholar 

  • Papola TS (1981) Urban informal sector in a developing economy. Vikash Publishing House, New Delhi

    Google Scholar 

  • Ranjan P (1999) An economic analysis of child labour. Econ Lett 64:99–105

    Article  Google Scholar 

  • Ranjan P (2001) Credit constraints and the phenomenon of child labour. J Dev Econ 64:81–102

    Article  Google Scholar 

  • Romatet E (1983) Calcutta’s informal sector: theory and reality. Econ Pol Wkly 18(50):2115–2128

    Google Scholar 

  • Swaminathan M (1998) Economic growth and the persistence of child labour: evidence from an Indian city. World Dev 26(8):1513–1528

    Article  Google Scholar 

  • UNCTAD (2008) World investment report: transnational corporations and the infrastructure challenge. United Nations, New York/Geneva

    Google Scholar 

  • UNCTAD (2013) The world investment report: global value chains: investment and trade for development. United Nations, New York

    Google Scholar 

  • Weiner M (1991) The child and the state in India: child labor and education policy in comparative perspective. Oxford University Press, Delhi

    Google Scholar 

  • World Development Report (1995) Oxford University Press/The World Bank, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendices

8.1.1 Appendix 8.1: (Model 1) Derivation of Child Labour Supply Function

Maximizing Eq. (8.2) with respect to C 1, C 3 and l C subject to the budget constraint (8.3), the following first-order conditions are obtained:

$$ \left(\frac{\left(\alpha U\right)}{\left({P}_1{C}_1\right)}\right)=\left(\frac{\left(\beta U\right)}{\left({P}_3{C}_3\right)}\right)=\left(\frac{\left(\gamma U\right)}{\left( n-{l}_C\right){W}_C}\right) $$
(8.A.1)

From (8.A.1) we get the following expressions:

$$ {C}_1=\left\{\frac{\alpha \left( n-{l}_C\right){W}_C}{\left(\gamma {P}_1\right)}\right\} $$
(8.A.2)
$$ {C}_3=\left\{\frac{\beta \left( n-{l}_C\right){W}_C}{\left(\gamma {P}_3\right)}\right\} $$
(8.A.3)

Substitution of the values of C 1 and C 3 into the budget constraint and further simplifications give us the following child labour supply function of each poor working household:

$$ {l}_C=\left\{\left(\alpha +\beta \right) n-\gamma \left(\frac{W}{W_C}\right)\right\} $$
(8.4)

8.1.2 Appendix 8.2: (Model 1) Effects on X 1 and X 2

Totally differentiating Eqs. (8.6), (8.7) and (8.8) and writing in a matrix notation, we obtain

$$ \left[\begin{array}{rrr}\hfill {\theta}_{L1}& \hfill {\theta}_{C1}& \hfill {\theta}_{K1}\\ {}\hfill {\theta}_{L2}& \hfill {\theta}_{C2}& \hfill {\theta}_{K2}\\ {}\hfill 0& \hfill 0& \hfill {\theta}_{K3}\end{array}\right]\left[\begin{array}{c}\hfill \widehat{W}\hfill \\ {}\hfill {\widehat{W}}_C\hfill \\ {}\hfill \widehat{r}\hfill \end{array}\right]=\left[\begin{array}{c}\hfill 0\hfill \\ {}\hfill {\widehat{P}}_2\hfill \\ {}\hfill -{\theta}_{23}{\widehat{P}}_2\hfill \end{array}\right] $$
(8.A.4)

where θ ji  = distributive share of the jth input in the ith sector and ‘⋀’ = proportional change.

Solving (8.A.4) by Cramer’s rule and using (8.1.1), we find the following expressions:

$$ \begin{array}{l}\widehat{W}=\left(\frac{{\widehat{P}}_2}{\left|\theta \right|}\right)\left[\left({\theta}_{K1}{\theta}_{C2}-{\theta}_{C1}{\theta}_{K2}\right){\theta}_{23}-{\theta}_{C1}{\theta}_{K3}\right]\\ {}\kern2.5em \left(-\right)\kern4em \left(-\right)\end{array} $$
(8.A.5)
$$ \begin{array}{l}{\widehat{W}}_C=\left(\frac{{\widehat{P}}_2}{\left|\theta \right|}\right)\left[{\theta}_{L1}{\theta}_{K3}+{\theta}_{23}\left({\theta}_{L1}{\theta}_{K2}-{\theta}_{K1}{\theta}_{L2}\right)\right]\\ {}\kern3em \left(-\right)\kern9.5em \left(+\right)\ \end{array} $$
(8.A.6)
$$ \widehat{r}=\left(\frac{\theta_{23}{\widehat{P}}_2}{\left|\theta \right|}\right)\left({\theta}_{C1}{\theta}_{L2}-{\theta}_{L1}{\theta}_{C2}\right)=-\left(\frac{\theta_{23}}{\theta_{K3}}\right){\widehat{P}}_2 $$
(8.A.7)
$$ \left|\theta \right|={\theta}_{K3}\left({\theta}_{L1}{\theta}_{C2}-{\theta}_{L2}{\theta}_{C1}\right)<0. $$
(8.A.8)

where |θ| is the determinant to the coefficient matrix given by (8.A.4).

Again differentiating (8.9), (8.10) and (8.11.1) and arranging in a matrix notation, one finds

$$ \left[\begin{array}{rrr}{\lambda}_{L1}& \hfill {\lambda}_{L2}& \hfill {\lambda}_{L3}\\ {}\hfill {\lambda}_{K1}& \hfill {\lambda}_{K2}& \hfill {\lambda}_{K3}\\ {}\hfill {\lambda}_{C1}& \hfill {\lambda}_{C2}& \hfill \frac{\lambda_{L3}}{1-{\lambda}_{L3}}\end{array}\right]\left[\begin{array}{l}{\widehat{X}}_1\\ {}{\widehat{X}}_2\\ {}{\widehat{X}}_3\end{array}\right]=\left[\begin{array}{l} -{A}_1{\widehat{P}}_2\\ {} \widehat{K}-{A}_2{\widehat{P}}_2\\ {} -{A}_3{\widehat{P}}_2\end{array}\right] $$
(8.A.9)

where

$$ \begin{array}{l}{A}_1=\left(\frac{1}{\left|\theta \right|}\right)\big[\left({\lambda}_{L1}{S}_{L L}^1+{\lambda}_{L2}{S}_{L L}^2\right)\left\{{\theta}_{K1}{\theta}_{23}{\theta}_{C2}-{\theta}_{C1}\left({\theta}_{K3}+{\theta}_{23}{\theta}_{K2}\right)\right\}\\ {}\kern3em \left(-\right)\kern4em \left(-\right)\kern7em \left(-\right)\\ \qquad{}+\left({\lambda}_{L1}{S}_{L C}^1+{\lambda}_{L2}{S}_{L C}^2\right)\left\{{\theta}_{L1}\left({\theta}_{K3}+{\theta}_{23}{\theta}_{K2}\right)-{\theta}_{K1}{\theta}_{23}{\theta}_{L2}\right\}\\ \quad{}\kern5.5em \left(+\right)\kern10.5em \left(+\right)\kern0.75em \\ \qquad{}+\left({\lambda}_{L1}{S}_{L K}^1+{\lambda}_{L2}{S}_{L K}^2+{\lambda}_{L3}{S}_{L K}^3\right){\theta}_{23}\left({\theta}_{C1}{\theta}_{L2}-{\theta}_{L1}{\theta}_{C2}\right)\big]<0\\ {}\kern6.7em \left(+\right)\kern12em \left(+\right)\end{array} $$
(8.A.10.1)
$$ \begin{array}{c}{A}_2=\left(\frac{1}{\left|\theta \right|}\right)\left[\left({\lambda}_{K1}{S}_{K L}^1+{\lambda}_{K2}{S}_{K L}^2\right)\left\{{\theta}_{K1}{\theta}_{23}{\theta}_{C2}-{\theta}_{C1}\left({\theta}_{K3}+{\theta}_{23}{\theta}_{K2}\right)\right\}\right.\\ {}\kern-5.8em \left(-\right)\kern4em \left(+\right)\kern8em \left(-\right)\\ {}\ +\left({\lambda}_{K1}{S}_{K C}^1+{\lambda}_{K2}{S}_{K C}^2\right)\left\{{\theta}_{L1}\left({\theta}_{K3}+{\theta}_{23}{\theta}_{K2}\right)-{\theta}_{K1}{\theta}_{23}{\theta}_{L2}\right\}\\ {}\kern.5em \left(+\right)\kern11em \left(+\right)\\ \ \qquad\left.+\left({\lambda}_{K1}{S}_{K K}^1+{\lambda}_{K2}{S}_{K K}^2+{\lambda}_{K3}{S}_{K K}^3\right){\theta}_{23}\left({\theta}_{C1}{\theta}_{L2}-{\theta}_{L1}{\theta}_{C2}\right)\right]=?\\ {}\kern3.5em \left(-\right)\kern10em \left(+\right)\end{array} $$
(8.A.10.2)
$$ \begin{array}{c}{A}_3=\left(\frac{1}{\left|\theta \right|}\right)\left[\left({\lambda}_{C1}{S}_{C L}^1+{\lambda}_{C2}{S}_{C L}^2+\frac{\gamma W}{l_C{W}_C}\right)\left\{{\theta}_{K1}{\theta}_{23}{\theta}_{C2}-{\theta}_{C1}\left({\theta}_{K3}+{\theta}_{23}{\theta}_{K2}\right)\right\}\right.\\ {}\kern0.5em \left(-\right)\kern5em \left(+\right)\kern9em \left(-\right)\\ \ {}+\left({\lambda}_{C1}{S}_{C C}^1+{\lambda}_{C2}{S}_{C C}^2-\frac{\gamma W}{l_C{W}_C}\right)\left\{{\theta}_{L1}\left({\theta}_{K3}+{\theta}_{23}{\theta}_{K2}\right)-{\theta}_{K1}{\theta}_{23}{\theta}_{L2}\right\}\\ {}\kern4em \left(-\right)\kern12em \left(+\right)\\ \ \kern-7pt\left.+\left({\lambda}_{C1}{S}_{C K}^1+{\lambda}_{C2}{S}_{C K}^2+\frac{\lambda_{L3}}{1-{\lambda}_{L3}}{S}_{L K}^3\right){\theta}_{23}\left({\theta}_{C1}{\theta}_{L2}-{\theta}_{L1}{\theta}_{C2}\right)\right]=?\\ {}\kern6em \left(+\right)\kern8em \left(+\right)\end{array} $$
(8.A.10.3)
$$ \left|\lambda \right|=\left(\frac{\lambda_{L3}}{1-{\lambda}_{L3}}\right){\left|\lambda \right|}_{L K}^{12}+{\lambda}_{K3}{\left|\lambda \right|}_{CL}^{12}-{\lambda}_{L3}{\left|\lambda \right|}_{CK}^{12} $$
(8.A.10.4)

where |λ| is the determinant of the coefficient matrix and

$$ \left.\begin{array}{cc}\hfill {\left|\lambda \right|}_{L K}^{12}=\left({\lambda}_{L1}{\lambda}_{K2}-{\lambda}_{L2}{\lambda}_{K1}\right)>0;\hfill & \hfill {\left|\lambda \right|}_{C L}^{12}=\left({\lambda}_{C1}{\lambda}_{L2}-{\lambda}_{C2}{\lambda}_{L1}\right)>0;\hfill \\ {}\hfill {\left|\lambda \right|}_{C K}^{12}=\left({\lambda}_{C1}{\lambda}_{K2}-{\lambda}_{C2}{\lambda}_{K1}\right)>0\hfill & \hfill \hfill \end{array}\right\} $$
(8.A.11)

(The signs are found by using (8.1.1).)

From (8.A.10.4) and (8.A.11), it follows that

$$ \left|\lambda \right|>0\kern0.5em \mathrm{if}\kern0.5em \left(\frac{\lambda_{K3}}{\lambda_{L3}}\right)\ge \left(\frac{{\left|\lambda \right|}_{CK}^{12}}{{\left|\lambda \right|}_{CL}^{12}}\right);\kern0.5em \mathrm{or},\kern0.5em \mathrm{if}\left(\frac{1}{1-{\lambda}_{L3}}\right)\ge \left(\frac{{\left|\lambda \right|}_{CK}^{12}}{{\left|\lambda \right|}_{L K}^{12}}\right) $$
(8.A.12)

Solving (8.A.9) by Cramer’s rule, the following expressions are found:

$$ \begin{array}{lll}{\widehat{X}}_2&=\left(\frac{{\widehat{P}}_2}{\left|\lambda \right|}\right)\left[{A}_3\left({\lambda}_{L1}{\lambda}_{K3}-{\lambda}_{L3}{\lambda}_{K1}\right)+{A}_2{\lambda}_{L3}\left({\lambda}_{C1}-\frac{\lambda_{L1}}{1-{\lambda}_{L3}}\right)\right.\\ &\quad \left. + {A}_1\left(\frac{\lambda_{K1}{\lambda}_{L3}}{1-{\lambda}_{L3}}-{\lambda}_{K3}{\lambda}_{C1}\right)\right] +\left(\frac{\lambda_{L3}\widehat{K}}{\left|\lambda \right|}\right)\left(\frac{\lambda_{L1}}{1-{\lambda}_{L3}}-{\lambda}_{C1}\right)\end{array} $$
(8.A.13)
$$ \begin{array}{lll}{\widehat{X}}_3&=\left(\frac{{\widehat{P}}_2}{\left|\lambda \right|}\right)\big[{A}_3\left({\lambda}_{L2}{\lambda}_{K1}-{\lambda}_{L1}{\lambda}_{K2}\right)+{A}_2\left({\lambda}_{L1}{\lambda}_{C2}-{\lambda}_{L2}{\lambda}_{C1}\right)\\ & \ \quad + {A}_1\left({\lambda}_{K2}{\lambda}_{C1}-{\lambda}_{K1}{\lambda}_{C2}\right)\big]+\left(\frac{\widehat{K}}{\left|\lambda \right|}\right)\left({\lambda}_{L2}{\lambda}_{C1}-{\lambda}_{L1}{\lambda}_{C2}\right)\end{array} $$
(8.A.14)

8.1.3 Appendix 8.3: Derivation of Stability Condition in the Market for the Non-traded Input (in Model 1)

For Walrasian static stability in the market for the non-traded input (good 2), we need

$$ \left(\frac{{\widehat{X}}_3}{{\widehat{P}}_2}\right)-\left(\frac{{\widehat{X}}_2}{{\widehat{P}}_2}\right)<0 $$
(8.A.15)

Using (8.A.13) and (8.A.14) from (8.A.15), we can write

$$ \begin{array}{lll}&\left[\left(\frac{{\widehat{X}}_3}{{\widehat{P}}_2}\right)-\left(\frac{{\widehat{X}}_2}{{\widehat{P}}_2}\right)\right]=\left(\frac{1}{\left|\lambda \right|}\right)\left[{A}_3\left({\lambda}_{L2}{\lambda}_{K1}-{\lambda}_{L1}{\lambda}_{K2}\right)+{A}_2\left({\lambda}_{L1}{\lambda}_{C2}-{\lambda}_{L2}{\lambda}_{C1}\right)\right.\\ &\left.\qquad\qquad\qquad\qquad\quad +{A}_1\left({\lambda}_{K2}{\lambda}_{C1}-{\lambda}_{K1}{\lambda}_{C2}\right)\right]\\ & \qquad -\left(\frac{1}{\left|\lambda \right|}\right)\left[{A}_3\left({\lambda}_{L1}{\lambda}_{K3}-{\lambda}_{L3}{\lambda}_{K1}\right)+{A}_2{\lambda}_{L3}\left({\lambda}_{C1}-\frac{\lambda_{L1}}{1-{\lambda}_{L3}}\right)\right.\\ & \qquad\qquad \left. +{A}_1\left(\frac{\lambda_{K1}{\lambda}_{L3}}{1-{\lambda}_{L3}}-{\lambda}_{K3}{\lambda}_{C1}\right)\right]<0\end{array} $$

or

$$ \begin{array}{lll}&\left(\frac{A_3}{\left|\lambda \right|}\right)\left[{\lambda}_{K1}\left({\lambda}_{L2}+{\lambda}_{L3}\right)-{\lambda}_{L1}\left({\lambda}_{K2}+{\lambda}_{K3}\right)\right]+\left(\frac{A_2}{\left|\lambda \right|}\right)\left[{\lambda}_{L1}\left({\lambda}_{C2}+\frac{\lambda_{L3}}{1-{\lambda}_{L3}}\right)\right.\\ &\qquad\left.-{\lambda}_{C1}\left({\lambda}_{L2}+{\lambda}_{L3}\right)\right]\\ &+\left(\frac{A_1}{\left|\lambda \right|}\right)\left[{\lambda}_{C1}\left({\lambda}_{K2}+{\lambda}_{K3}\right)-{\lambda}_{K1}\left({\lambda}_{C2}+\frac{\lambda_{L3}}{1-{\lambda}_{L3}}\right)\right]= D<0\end{array} $$
(8.A.15.1)

Thus, for static stability in the market for good 2, we require that

$$ D<0 $$

8.1.4 Appendix 8.4: Effect of FDI on P 2 (in Model 1)

Differentiating Eq. (8.12) we obtain

$$ {\widehat{X}}_3={\widehat{X}}_2 $$
(8.A.16)

Using Eq. (8.A.13) and (8.A.14) from Eq. (8.A.16), it follows that

$$ \begin{array}{lll}&\left(\frac{{\widehat{P}}_2}{\left|\lambda \right|}\right)\left[{A}_3\left({\lambda}_{L2}{\lambda}_{K1}-{\lambda}_{L1}{\lambda}_{K2}\right)+{A}_2\left({\lambda}_{L1}{\lambda}_{C2}-{\lambda}_{L2}{\lambda}_{C1}\right)\right.\\ &\left.\quad+{A}_1\left({\lambda}_{K2}{\lambda}_{C1}-{\lambda}_{K1}{\lambda}_{C2}\right)\right]+\left(\frac{\widehat{K}}{\left|\lambda \right|}\right)\left({\lambda}_{L2}{\lambda}_{C1}-{\lambda}_{L1}{\lambda}_{C2}\right)\\ &=\left(\frac{{\widehat{P}}_2}{\left|\lambda \right|}\right)\left[{A}_3\left({\lambda}_{L1}{\lambda}_{K3}-{\lambda}_{L3}{\lambda}_{K1}\right)+{A}_2{\lambda}_{L3}\left({\lambda}_{C1}-\frac{\lambda_{L1}}{1-{\lambda}_{L3}}\right)\right.\\ &\left.\quad +{A}_1\left(\frac{\lambda_{K1}{\lambda}_{L3}}{1-{\lambda}_{L3}}-{\lambda}_{K3}{\lambda}_{C1}\right)\right]+\left(\frac{\lambda_{L3}\widehat{K}}{\left|\lambda \right|}\right)\left(\frac{\lambda_{L1}}{1-{\lambda}_{L3}}-{\lambda}_{C1}\right)\end{array} $$

Collecting terms, simplifying and using (8.A.15.1), one finds

$$ \begin{array}{l}\left(\dfrac{{\widehat{P}}_2}{\widehat{K}}\right)=\left(\dfrac{1}{D\left|\lambda \right|}\right)\left[\dfrac{\lambda_{L1}{\lambda}_{C2}-{\lambda}_{C1}{\lambda}_{L2}}{\left({\lambda}_{L1}+{\lambda}_{L2}\right)}\right]>0\\ {}\kern4.5em \left(-\right)\left(+\right)\kern3em \left(-\right)\ \end{array} $$
(8.A.17)

So, an inflow of foreign capital raises the price of the non-traded input.

8.1.5 Appendix 8.5: Effect of FDI on Factor Prices, P 2 and X 3 (in Model 1)

Using (8.A.17) from (8.A.5), (8.A.6) and (8.A.7), one obtains the following expressions:

$$ \begin{array}{l}\left(\dfrac{\widehat{W}}{\widehat{K}}\right)\!=\!\left(\dfrac{1}{D\left|\lambda \right|\left|\theta \right|}\right)\left[\dfrac{\lambda_{L1}{\lambda}_{C2}-{\lambda}_{C1}{\lambda}_{L2}}{\left({\lambda}_{L1}+{\lambda}_{L2}\right)}\right]\left[\left({\theta}_{K1}{\theta}_{C2}-{\theta}_{C1}{\theta}_{K2}\right){\theta}_{23}-{\theta}_{C1}{\theta}_{K3}\right]>0\\ {}\kern4em \left(-\right)\left(+\right)\left(-\right)\kern3em \left(-\right)\kern6em \left(-\right)\end{array} $$
(8.A.5.1)
$$ \begin{array}{l}\left(\dfrac{{\widehat{W}}_C}{\widehat{K}}\right)\!=\!\left(\dfrac{1}{D\left|\lambda \right|\left|\theta \right|}\right)\left[\dfrac{\lambda_{L1}{\lambda}_{C2}-{\lambda}_{C1}{\lambda}_{L2}}{\left({\lambda}_{L1}+{\lambda}_{L2}\right)}\right]\left[{\theta}_{L1}{\theta}_{K3}\!+\!{\theta}_{23}\left({\theta}_{L1}{\theta}_{K2}\!-\!{\theta}_{K1}{\theta}_{L2}\right)\right]<0\\ {}\kern4em \left(-\right)\left(+\right)\left(-\right)\kern4em \left(-\right)\kern11.8em \left(+\right)\end{array} $$
(8.A.6.1)
$$ \begin{array}{l}\left(\dfrac{\widehat{r}}{\widehat{K}}\right)\!=\!\left(\dfrac{\theta_{23}{\widehat{P}}_2}{\left|\theta \right|\widehat{K}}\right)\left({\theta}_{C1}{\theta}_{L2}\!-\!{\theta}_{L1}{\theta}_{C2}\right)\!=\!-\left(\!\dfrac{\theta_{23}}{\theta_{K3}}\!\right)\left(\!\dfrac{1}{D\left|\lambda \right|}\!\right)\left[\!\dfrac{\lambda_{L1}{\lambda}_{C2}-{\lambda}_{C1}{\lambda}_{L2}}{\left({\lambda}_{L1}+{\lambda}_{L2}\right)}\!\right]\!<\!0.\\ {}\kern20.1em (\hbox{--})(\hbox{+})\kern3.8em \left(-\right)\end{array} $$
(8.A.7.1)

Subtraction of (8.A.6.1) from (8.A.5.1) shows that

$$ \begin{array}{l}\left(\frac{\widehat{W}}{\widehat{K}}-\frac{{\widehat{W}}_C}{\widehat{K}}\right)>0\\ {}\left(+\right)\kern1em \left(-\right)\end{array} $$
(8.A.18)

Therefore, from (8.A.5.1), (8.A.6.1), (8.A.7.1) and (8.A.18), one finds that an inflow of foreign capital raises the adult wage rate and lowers both the return to capital and the child wage rate. The (W C /W) ratio decreases as a consequence.

Using (8.A.17) and (8.A.10.1), (8.A.10.2), (8.A.10.3) and (8.A.10.4) and simplifying from (8.A.14), we find

$$ \begin{array}{l}\left(\dfrac{{\widehat{X}}_3}{\widehat{K}}\right)=\left[\dfrac{\lambda_{L3}\left({\lambda}_{L1}+{\lambda}_{L2}\right){\left|\lambda \right|}_{C L}^{12}}{\left(1-{\lambda}_{L3}\right) D{\left(\left|\lambda \right|\right)}^2}\right]\left[\dfrac{\left({\lambda}_{K1}+{\lambda}_{K2}\right)}{\left({\lambda}_{L1}+{\lambda}_{L2}\right)}-\dfrac{\lambda_{K3}}{\lambda_{L3}}\right]\left[{\lambda}_{L1}{A}_3-{\lambda}_{C1}{A}_1\right]\\ {}\kern9.3em \left(-\right)\kern9.9em \left(-\right)\kern7em \left(-\right)\end{array} $$
(8.A.14.1)

> 0 if A 3 ≥ 0

Note that if technologies of production are of fixed-coefficient type, S k ji  = 0. From (8.A.10.1) and (8.A.10.3) it then follows that A 1 = 0 and A 3 > 0. From (8.A.14.1) it is, therefore, evident that

$$ \left(\frac{{\widehat{X}}_3}{\widehat{K}}\right)>0 $$

So, the formal sector (sector 3) expands following inflows of foreign capital under the sufficient condition that A 3 ≥ 0. Sector 3 unambiguously expands if the technologies of production are of fixed-coefficient type.

8.1.6 Appendix 8.6: (Model 2) Derivations for Obtaining the Expressions for Changes in Output Composition

Total differential of (8.23) yields

$$ \Sigma {a}_{Li} d{X}_i=-\Sigma {X}_i d{a}_{Li} $$

or

$$ \begin{array}{lll}\Sigma \left(\frac{X_i{a}_{L i}}{L}\right){\widehat{X}}_i&=-\left(\frac{X_1}{L}\right)\left\{\left(\frac{\partial {a}_{L1}}{\partial W}\right) d W+\left(\frac{\partial {a}_{L1}}{\partial {W}_C}\right) d{W}_C+\left(\frac{\partial {a}_{L1}}{\partial R}\right) d R\right\}\\ &\quad-\left(\frac{X_2}{L}\right)\left\{\left(\frac{\partial {a}_{L2}}{\partial W}\right) d W+\left(\frac{\partial {a}_{L2}}{\partial {W}_C}\right) d{W}_C\right\}\\ &\quad-\left(\frac{X_3}{L}\right)\left\{\left(\frac{\partial {a}_{L3}}{\partial R}\right) d R\right\}\end{array} $$
(8.A.19)

Using the result that \( \widehat{r}=0 \) (see (8.26)) from the above expression, we can write

$$ {\lambda}_{L1}{\widehat{X}}_1+{\lambda}_{L2}{\widehat{X}}_2+{\lambda}_{L3}{\widehat{X}}_3\!=\!-\left({\lambda}_{L1}{S}_{L L}^1+{\lambda}_{L2}{S}_{L L}^2\right)\widehat{W}-\left({\lambda}_{L1}{S}_{L C}^1+{\lambda}_{L2}{S}_{L C}^2\right){\widehat{W}}_C $$
(8.A.20)

Substituting the values of \( \widehat{W} \) and \( {\widehat{W}}_C \) from (8.27) and (8.28) into (8.A.20) and simplifying, we get the following:

$$ {\lambda}_{L1}{\widehat{X}}_1+{\lambda}_{L2}{\widehat{X}}_2+{\lambda}_{L3}{\widehat{X}}_3=-{A}_1{\widehat{P}}_2 $$
(8.A.21)

where \( {A}_1=\left[\left({\lambda}_{L1}{S}_{L C}^1+{\lambda}_{L2}{S}_{L C}^2\right)\left({\theta}_{L1}+{\theta}_{C1}\right)+{\lambda}_{L1}{S}_{L K}^1{\theta}_{C1}\right]\left(\frac{1}{\left|\theta \right|}\right) \)

(Note that S 1 LL  + S 1 LC  + S 1 LK  = 0 ⇒ S 1 LL  = − (S 1 LC  + S 1 LK ) and S 2 LL  + S 2 LC  = 0)

Now differentiating (8.24) we get

$$ {\lambda}_{K1}{\widehat{X}}_1+{\lambda}_{K3}{\widehat{X}}_3=\widehat{K}-{\lambda}_{K1}\left({S}_{K L}^1\widehat{W}-{S}_{K C}^1{\widehat{W}}_C\right) $$

Substituting the values of \( \widehat{W} \) and \( {\widehat{W}}_C \) from (8.27) and (8.28) into the above expression and simplifying, one gets the following:

$$ {\lambda}_{K1}{\widehat{X}}_1+{\lambda}_{K3}{\widehat{X}}_3=\widehat{K}+\left(\frac{\lambda_{K1}}{\left|\theta \right|}\right)\left[{S}_{K L}^1{\theta}_{C1}-{S}_{K C}^1{\theta}_{L1}\right]{\widehat{P}}_2 $$

or

$$ {\lambda}_{K1}{\widehat{X}}_1+{\lambda}_{K3}{\widehat{X}}_3=\widehat{K}+{A}_2{\widehat{P}}_2 $$
(8.A.22)

where \( {A}_2=\left(\frac{\lambda_{K1}}{\left|\theta \right|}\right)\left[{S}_{K L}^1{\theta}_{C1}-{S}_{K C}^1{\theta}_{L1}\right] \)

Similarly differentiating Eq. (8.25.1) we get

$$ \begin{array}{lll} {\lambda}_{C1}{\widehat{X}}_1+{\lambda}_{C2}{\widehat{X}}_2+\left(\frac{\lambda_{L3}}{1-{\lambda}_{L3}}\right){\widehat{X}}_3&=-\left\{{\lambda}_{C1}{S}_{C L}^1+{\lambda}_{C2}{S}_{C L}^2+{G}_2\right\}\widehat{W}\\ &\quad-\left\{{\lambda}_{C1}{S}_{C C}^1+{\lambda}_{C2}{S}_{C C}^2-{G}_1\right\}{\widehat{W}}_C-{G}_3\widehat{E} \end{array} $$
(8.A.23)

Substituting the values of \( \widehat{W} \) and \( {\widehat{W}}_C \) into (8.A.23) and simplifying, we get the following:

$$ \begin{array}{c}{\lambda}_{C1}{\widehat{X}}_1+{\lambda}_{C2}{\widehat{X}}_2+\left(\frac{\lambda_{L3}}{1-{\lambda}_{L3}}\right){\widehat{X}}_3=\frac{{\widehat{P}}_2}{\left|\theta \right|}\left[{\lambda}_{C1}{S}_{C L}^1\left({\theta}_{C1}+{\theta}_{L1}\right)+{\lambda}_{C2}{S}_{C L}^2\left({\theta}_{C1}+{\theta}_{L1}\right)\right.\\ \qquad\qquad\qquad\qquad\qquad {}\left.\kern1em +{\lambda}_{C1}{S}_{C K}^1{\theta}_{L1}+{G}_2{\theta}_{C1}+{G}_1{\theta}_{L1}\right]-{G}_3\widehat{E}\end{array} $$

This is rewritten as follows:

$$ {\lambda}_{C1}{\widehat{X}}_1+{\lambda}_{C2}{\widehat{X}}_2+\left(\frac{\lambda_{L3}}{1-{\lambda}_{L3}}\right){\widehat{X}}_3={A}_3{\widehat{P}}_2-{G}_3\widehat{E} $$
(8.A.24)

where

$$ \begin{array}{lll} {G}_1&=\frac{\gamma {W}_C\left\{ W+ n B(E)\right\}}{l_C{\left\{{W}_C- B(E)\right\}}^2}>0;\kern0.5em {G}_2=\frac{\gamma W}{l_C\left\{{W}_C- B(E)\right\}}>0;\\ {G}_3&=\frac{\gamma {B}^{\prime } E\left\{ W+ n{W}_C\right\}}{l_C{\left\{{W}_C- B(E)\right\}}^2}>0 \end{array}$$

and

$$ \begin{array}{lll} {A}_3&=\frac{1}{\left|\theta \right|}\left[{\lambda}_{C1}{S}_{C L}^1\left({\theta}_{C1}+{\theta}_{L1}\right)+{\lambda}_{C2}{S}_{C L}^2\left({\theta}_{C1}+{\theta}_{L1}\right)+{\lambda}_{C1}{S}_{C K}^1{\theta}_{L1}\right.\\ &\left.\quad +{G}_2{\theta}_{C1}+{G}_1{\theta}_{L1}\right] \end{array} $$

(8.A.21), (8.A.22) and (8.A.24) can be written in a matrix notation as follows:

$$ \left[\begin{array}{lll}{\lambda}_{L1}\hfill & {\lambda}_{L2}\hfill & {\lambda}_{L3}\hfill \\ {}{\lambda}_{K1}\hfill & 0\hfill & {\lambda}_{K3}\hfill \\ {}{\lambda}_{C1}\hfill & {\lambda}_{C2}\hfill & \left(\frac{\lambda_{L3}}{1-{\lambda}_{L3}}\right)\hfill \end{array}\right]\left[\begin{array}{c}\hfill {\widehat{X}}_1\hfill \\ {}\hfill {\widehat{X}}_2\hfill \\ {}\hfill {\widehat{X}}_3\hfill \end{array}\right]=\left[\begin{array}{c} -{A}_1{\widehat{P}}_2 \\ {}\left(\widehat{K}+{A}_2{\widehat{P}}_2\right)\\ {}\left({A}_3{\widehat{P}}_2-{G}_3\widehat{E}\right)\end{array}\right] $$
(8.A.25)

Solving (8.A.25) by Cramer’s rule and simplifying, one gets

$$ {\widehat{X}}_1=\left(\frac{1}{\left|\lambda \right|}\right)\left[{\lambda}_{L3}\left({\lambda}_{C2}-\frac{\lambda_{L2}}{1-{\lambda}_{L3}}\right)\widehat{K}+{Z}_1{\widehat{P}}_2-{\lambda}_{L2}{\lambda}_{K3}{G}_3\widehat{E}\right] $$
(8.29)
$$ {\widehat{X}}_2=\left(\frac{1}{\left|\lambda \right|}\right)\left[{\lambda}_{L3}\left(\frac{\lambda_{L1}}{1-{\lambda}_{L3}}-{\lambda}_{C1}\right)\widehat{K}+{Z}_2{\widehat{P}}_2+\left({\lambda}_{L1}{\lambda}_{K3}-{\lambda}_{K1}{\lambda}_{L3}\right){G}_3\widehat{E}\right] $$
(8.30)

and

$$ {\widehat{X}}_3=\left(\frac{1}{\left|\lambda \right|}\right)\left[\left({\lambda}_{L2}{\lambda}_{C1}-{\lambda}_{L1}{\lambda}_{C2}\right)\widehat{K}-{Z}_3{\widehat{P}}_2+{\lambda}_{L2}{\lambda}_{K1}{G}_3\widehat{E}\right] $$
(8.31)

where

$$ \begin{array}{lll}{Z}_1&=\left[{\lambda}_{K3}\left({A}_1{\lambda}_{C2}+{A}_3{\lambda}_{L2}\right)+{\lambda}_{L3}{A}_2\left({\lambda}_{C2}-\frac{\lambda_{L2}}{1-{\lambda}_{L3}}\right)\right]\\ {Z}_2&=\left[{A}_2{\lambda}_{L3}\left(\frac{\lambda_{L1}}{1-{\lambda}_{L3}}-{\lambda}_{C1}\right)-{A}_3\left({\lambda}_{L1}{\lambda}_{K3}-{\lambda}_{K1}{\lambda}_{L3}\right)\right.\\ &\left.\quad+{A}_1\left\{\frac{\lambda_{K1}{\lambda}_{L3}}{\left(1-{\lambda}_{L3}\right)}-{\lambda}_{K3}{\lambda}_{C1}\right\}\right]\\ \left|\lambda \right|&={\lambda}_{K3}\left({\lambda}_{L2}{\lambda}_{C1}-{\lambda}_{L1}{\lambda}_{C2}\right)+\left(\frac{\lambda_{K1}{\lambda}_{L3}}{1-{\lambda}_{L3}}\right)\left({\lambda}_{C2}\left(1-{\lambda}_{L3}\right)-{\lambda}_{L2}\right)\\ &=\left({\lambda}_{L2}{\lambda}_{C1}-{\lambda}_{L1}{\lambda}_{C2}\right)\left(\frac{\lambda_{K3}-{\lambda}_{L3}}{1-{\lambda}_{L3}}\right)\end{array} $$
(8.32.1)

(see Appendix 8.A.10)

and

$$ {Z}_3=\left[-{A}_2\left({\lambda}_{L2}{\lambda}_{C1}-{\lambda}_{L1}{\lambda}_{C2}\right)+{A}_3{\lambda}_{L2}{\lambda}_{K1}+{A}_1{\lambda}_{K1}{\lambda}_{C2}\right] $$

8.1.7 Appendix 8.7: (Model 2) Derivation of the Stability Condition in the Market for the Non-traded Final Commodity

Differentiating the demand function for commodity 2 given by Eq. (8.20), we can derive

$$ {\widehat{X}}_2^D={E}_{P2}{\widehat{P}}_2+{E}_Y\left(\frac{W^{*} L{\lambda}_{L3}}{Y}\right){\widehat{X}}_3-\left(\frac{T}{Y}\right){E}_Y\widehat{T} $$
(8.A.26)

Substituting \( {\widehat{X}}_3 \) from (8.31) and simplifying, one obtains the following:

$$ \begin{array}{lll} {\widehat{X}}_2^D & = {E}_{P2}{\widehat{P}}_2+\left(\frac{E_Y}{\left|\lambda \right|}\right)\left(\frac{W^{*} L{\lambda}_{L3}}{Y}\right)\left\{\left({\lambda}_{L2}{\lambda}_{C1}-{\lambda}_{L1}{\lambda}_{C2}\right)\right.\widehat{K}\\ &\quad \left. -{Z}_3{\widehat{P}}_2+{\lambda}_{L2}{\lambda}_{K1}{G}_3\widehat{E}\right\}-\left(\frac{T}{Y}\right){E}_Y\widehat{T} \end{array} $$
(8.A.27)

Allowing only P 2 to change, while keeping all parameters unchanged, we find that

$$ \frac{{\widehat{X}}_2^D}{{\widehat{P}}_2}={E}_{P2}-\left(\frac{E_Y}{\left|\lambda \right|}\right)\left(\frac{W^{*} L{\lambda}_{L3}}{Y}\right){Z}_3 $$
(8.A.28)

Similarly, from Eq. (8.30) one obtains the following:

$$ \frac{{\widehat{X}}_2}{{\widehat{P}}_2}=\left(\frac{Z_2}{\left|\lambda \right|}\right) $$
(8.A.29)

For static stability we require that

$$ \left(\frac{{\widehat{X}}_2^D}{{\widehat{P}}_2}-\frac{{\widehat{X}}_2}{{\widehat{P}}_2}\right)=\left[{E}_{P2}-\left(\frac{E_Y}{\left|\lambda \right|}\right)\left(\frac{W^{*} L{\lambda}_{L3}}{Y}\right){Z}_3-\left(\frac{Z_2}{\left|\lambda \right|}\right)\right]=\Delta <0 $$
(8.33)

8.1.8 Appendix 8.8: (Model 2) Derivation of Eq. (8.34.1)

In equilibrium in the market for commodity 2, we have \( {\widehat{X}}_2^D={\widehat{X}}_2 \). Now using (8.A.27) and (8.30), we can write

$$ \begin{array}{lll}{}&{E}_{P2}{\widehat{P}}_2+\left(\frac{E_Y}{\left|\lambda \right|}\right)\left(\frac{W^{*} L{\lambda}_{L3}}{Y}\right)\left\{\left({\lambda}_{L2}{\lambda}_{C1}-{\lambda}_{L1}{\lambda}_{C2}\right)\widehat{K}-{Z}_3{\widehat{P}}_2+{\lambda}_{L2}{\lambda}_{K1}{G}_3\widehat{E}\right\}\\ &\quad -\left(\frac{T}{Y}\right){E}_Y\widehat{T}\\ {}&=\left(\frac{1}{\left|\lambda \right|}\right)\left[{\lambda}_{L3}\left(\frac{\lambda_{L1}}{1-{\lambda}_{L3}}-{\lambda}_{C1}\right)\widehat{K}+{Z}_2{\widehat{P}}_2+\left({\lambda}_{L1}{\lambda}_{K3}-{\lambda}_{K1}{\lambda}_{L3}\right){G}_3\widehat{E}\right]\end{array} $$

or

$$ \begin{array}{lll}&\left[{E}_{P2}-\left(\frac{E_Y}{\left|\lambda \right|}\right)\left(\frac{W^{*} L{\lambda}_{L3}}{Y}\right){Z}_3-\frac{Z_2}{\left|\lambda \right|}\right]{\widehat{P}}_2\\ &\quad =\left(\frac{1}{\left|\lambda \right|}\right)\left[{\lambda}_{L3}\left(\frac{\lambda_{L1}}{1-{\lambda}_{L3}}-{\lambda}_{C1}\right)-\left(\frac{E_Y{W}^{*} L{\lambda}_{L3}}{Y}\right)\left({\lambda}_{L2}{\lambda}_{C1}-{\lambda}_{L1}{\lambda}_{C2}\right)\right]\widehat{K}\\ &\qquad +\!\left(\frac{1}{\left|\lambda \right|}\right)\left[\left({\lambda}_{L1}{\lambda}_{K3}-{\lambda}_{K1}{\lambda}_{L3}\right)\!-\!\left(\!\frac{E_Y{W}^{*} L{\lambda}_{L3}}{Y}\!\right){\lambda}_{L2}{\lambda}_{K1}\right]{G}_3\widehat{E}\!+\!\left(\frac{T}{Y}\right){E}_Y\widehat{T}\end{array} $$

Using (8.33) the above expression may be rewritten as follows:

$$ {\widehat{P}}_2={Q}_1\widehat{K}+{Q}_2\widehat{E}+{Q}_3\widehat{T} $$
(8.34.1)

where

$$ \left.\begin{array}{lll}{Q}_1&\!=\!\left(\!\frac{1}{\left|\lambda \right|}\!\right)\left(\!\frac{1}{\Delta}\!\right)\left[\!{\lambda}_{L3}\left(\frac{\lambda_{L1}}{1\!-\!{\lambda}_{L3}}-{\lambda}_{C1}\right)\!-\!\left(\!\frac{E_Y{W}^{*} L{\lambda}_{L3}}{Y}\right)\left({\lambda}_{L2}{\lambda}_{C1}-{\lambda}_{L1}{\lambda}_{C2}\!\right)\!\right]\!;\\ {Q}_2&=\left(\frac{G_3}{\left|\lambda \right|}\right)\left(\frac{1}{\Delta}\right)\left[\left({\lambda}_{L1}{\lambda}_{K3}-{\lambda}_{K1}{\lambda}_{L3}\right)-\left(\frac{E_Y{W}^{*} L{\lambda}_{L3}}{Y}\right){\lambda}_{L2}{\lambda}_{K1}\right];\kern1em \mathrm{and}\\ {Q}_3&=\left(\left(\frac{E_Y}{\Delta}\right)\left(\frac{T}{Y}\right)\right)<0\end{array}\right\} $$
(8.34.2)

8.1.9 Appendix 8.9: (Model 2) Derivation of Eqs. (8.35.1) and (8.35.2)

Differentiating Eq. (8.16) we get

$$ {\widehat{L}}_C={G}_1{\widehat{W}}_C-{G}_2\widehat{W}-{G}_3\widehat{E}-\left(\frac{\lambda_{L3}}{1-{\lambda}_{L3}}\right){\widehat{X}}_3 $$
(8.A.30)

Substitution of \( \widehat{W},{\widehat{W}}_C \) and \( {\widehat{X}}_3 \) from (8.27), (8.28) and (8.31) into (8.A.30) yields

$$ \begin{array}{lll}{\widehat{L}}_C=&\left(\frac{G_1}{\left|\theta \right|}\right){\theta}_{L1}{\widehat{P}}_2+\left(\frac{G_2}{\left|\theta \right|}\right){\theta}_{C1}{\widehat{P}}_2-{G}_3\widehat{E}\\ {}&-\left(\frac{\lambda_{L3}}{1-{\lambda}_{L3}}\right)\left(\frac{1}{\left|\lambda \right|}\right)\left[\left({\lambda}_{L2}{\lambda}_{C1}-{\lambda}_{L1}{\lambda}_{C2}\right)\widehat{K}-{Z}_3{\widehat{P}}_2+{\lambda}_{L2}{\lambda}_{K1}{G}_3\widehat{E}\right]\end{array} $$
(8.35.1)

Rearranging terms we write

$$ \begin{array}{l}{\widehat{L}}_C=\left[\left(\frac{G_1}{\left|\theta \right|}\right){\theta}_{L1}+\left(\frac{G_2}{\left|\theta \right|}\right){\theta}_{C1}+\left(\frac{\lambda_{L3}}{1-{\lambda}_{L3}}\right)\left(\frac{1}{\left|\lambda \right|}\right){Z}_3\right]{\widehat{P}}_2-\left(\frac{\lambda_{L3}}{1-{\lambda}_{L3}}\right)\left(\frac{1}{\left|\lambda \right|}\right)\\ \qquad \quad \left({\lambda}_{L2}{\lambda}_{C1}-{\lambda}_{L1}{\lambda}_{C2}\right)\widehat{K} -\left\{1+\left(\frac{\lambda_{L3}}{1-{\lambda}_{L3}}\right)\left(\frac{1}{\left|\lambda \right|}\right){\lambda}_{L2}{\lambda}_{K1}\right\}{G}_3\widehat{E}\end{array} $$

Now substituting \( {\widehat{P}}_2 \) from (8.34.1) into the above expression, using (8.32.1) and simplifying, one finally gets

$$ \begin{array}{c}{\widehat{L}}_C=\left[\left({I}_{W C}+{I}_W+{I}_L\right){Q}_1-\left(\frac{\lambda_{L3}}{\lambda_{K3}-{\lambda}_{L3}}\right)\right]\widehat{K}+\left[\left({I}_{W C}+{I}_W+{I}_L\right){Q}_2\right.\\ {}\kern1em \left.-\left\{1+\left(\frac{\lambda_{L3}}{1-{\lambda}_{L3}}\right)\left(\frac{\lambda_{L2}{\lambda}_{K1}}{\left|\lambda \right|}\right)\right\}{G}_3\right]\widehat{E}+\left[\left({I}_{W C}+{I}_W+{I}_L\right){Q}_3\right]\widehat{T}\end{array} $$
(8.35.2)

where

$$ {I}_{W C}=\left(\frac{G_1}{\left|\theta \right|}\right){\theta}_{L1};\kern1em {I}_W=\left(\frac{G_2}{\left|\theta \right|}\right){\theta}_{C1};\kern1em {I}_L=\left(\frac{\lambda_{L3}}{1-{\lambda}_{L3}}\right)\left(\frac{1}{\left|\lambda \right|}\right){Z}_3 $$
(8.36)

8.1.10 Appendix 8.10: (Model 2) Effects on Child Labour Incidence Under Alternate Factor Intensity Conditions

In this model, sector 3 has been assumed to be more capital-intensive (in physical sense) vis-à-vis sector 1 with respect to adult labour. This implies the following:

$$ \frac{\lambda_{K3}}{\lambda_{L3}}>\frac{\lambda_{K1}}{\lambda_{L1}}\Rightarrow \frac{\lambda_{K3}}{\lambda_{K1}}>\frac{\lambda_{L3}}{\lambda_{L1}}\Rightarrow \frac{1}{\lambda_{K1}}>\frac{\left({\lambda}_{L3}+{\lambda}_{L1}\right)}{\lambda_{L1}}\Rightarrow {\lambda}_{L1}>{\lambda}_{K1}\left({\lambda}_{L3}+{\lambda}_{L1}\right) $$
(8.A.31)

and

$$ \frac{\lambda_{L1}}{\lambda_{L3}}>\frac{\lambda_{K1}}{\lambda_{K3}}\Rightarrow \frac{\left({\lambda}_{L1}+{\lambda}_{L3}\right)}{\lambda_{L3}}>\frac{1}{\lambda_{K3}}\Rightarrow {\lambda}_{K3}>\frac{\lambda_{L3}}{\left({\lambda}_{L1}+{\lambda}_{L3}\right)}\Rightarrow {\lambda}_{K3}>{\lambda}_{L3} $$
(8.A.32)

(Note that (λ L1 + λ L3) < 1)

The expression for |λ| is as follows:

$$ \left|\lambda \right|={\lambda}_{K3}\left({\lambda}_{L2}{\lambda}_{C1}-{\lambda}_{L1}{\lambda}_{C2}\right)+\left(\frac{\lambda_{K1}{\lambda}_{L3}}{1-{\lambda}_{L3}}\right)\left({\lambda}_{C2}\left(1-{\lambda}_{L3}\right)-{\lambda}_{L2}\right) $$
(8.A.33)

Substitution of (λ L1 + λ L2) in place of (1 − λ L3) in (8.A.33) and simplification yield

$$ \left|\lambda \right|=\left({\lambda}_{L2}{\lambda}_{C1}-{\lambda}_{L1}{\lambda}_{C2}\right)\left(\frac{\lambda_{K3}-{\lambda}_{L3}}{1-{\lambda}_{L3}}\right)$$
(8.32.1)

From the stability condition in the market for commodity 2, we have

$$ \left[{E}_{P2}-\left(\frac{E_Y}{\left|\lambda \right|}\right)\left(\frac{W^{*} L{\lambda}_{L3}}{Y}\right){Z}_3-\left(\frac{Z_2}{\left|\lambda \right|}\right)\right]=\Delta <0$$
(8.33)

As both sectors 1 and 2 use adult labour and child labour as inputs, these together form a HOSS given the rental to capital, R. So, these sectors can be classified in terms of relative factor intensities.

8.1.10.1 Case I

We first consider the case where the export sector is more child labour-intensive vis-à-vis the non-traded sector with respect to adult labour. In other words,

$$ \left(\frac{a_{C1}}{a_{L1}}\right)>\left(\frac{a_{C2}}{a_{L2}}\right)\Rightarrow \left(\frac{\lambda_{C1}}{\lambda_{L1}}\right)>\left(\frac{\lambda_{C2}}{\lambda_{L2}}\right)\Rightarrow \left({\lambda}_{L2}{\lambda}_{C1}-{\lambda}_{L1}{\lambda}_{C2}\right)>0$$
(8.A.34)

In this case, we also have

$$ \left({\theta}_{C1}{\theta}_{L2}>{\theta}_{C2}{\theta}_{L1}\right)\Rightarrow \left|\theta \right|=\left({\theta}_{L1}{\theta}_{C2}-{\theta}_{C1}{\theta}_{L2}\right)<0 $$
(8.A.35)
$$ \left.\begin{array}{rr}\hfill \mathrm{From}\kern0.5em \left(8.\mathrm{A}.34\right)\kern0.5em \mathrm{we}\kern0.5em \mathrm{find}\kern0.5em \mathrm{that}& \hfill \frac{\lambda_{L2}}{\lambda_{L1}}>\frac{\lambda_{C2}}{\lambda_{C1}}\Rightarrow \frac{\left(1-{\lambda}_{L3}\right)}{\lambda_{L1}}>\frac{1}{\lambda_{C1}}\Rightarrow {\lambda}_{C1}>\frac{\lambda_{L1}}{\left(1-{\lambda}_{L3}\right)}\\[5pt] {}\hfill \mathrm{Alternatively}& \hfill \frac{\lambda_{C1}}{\lambda_{C2}}>\frac{\lambda_{L1}}{\lambda_{L2}}\Rightarrow \frac{1}{\lambda_{C2}}>\frac{\left(1-{\lambda}_{L3}\right)}{\lambda_{L2}}\Rightarrow \frac{\lambda_{L2}}{\left(1-{\lambda}_{L3}\right)}>{\lambda}_{C2}\end{array}\right\}$$
(8.A.36)

Assuming a K1 to be technologically given and using (8.33), (8.A.31), (8.A.32) and (8.A.34), (8.A.35) and (8.A.36) from (8.32.1), (8.32.2) and (8.34.2), it is easy to check that

$$ \begin{array}{ll} {}\left(\mathrm{i}\right)\hfill & \left|\lambda \right|>0;\hfill \\ {}\left(\mathrm{i}\mathrm{i}\right)\hfill & {A}_1<0;\hfill \\ {}\left(\mathrm{i}\mathrm{i}\mathrm{i}\right)\hfill & {A}_2=0;\hfill \\ {}\left(\mathrm{i}\mathrm{v}\right)\hfill & {A}_3<0;\hfill \\ {}\left(\mathrm{v}\right)\hfill & {Q}_1>0;\hfill \\ {}\left(\mathrm{v}\mathrm{i}\right)\hfill & {Q}_2>0\kern1em \mathrm{i}\mathrm{f}\kern1em \left[{\lambda}_{L1}{\lambda}_{K3}\le \left(\frac{E_Y{W}^{*} L{\lambda}_{L3}}{Y}\right){\lambda}_{L2}{\lambda}_{K1}\right]\hfill \\ {}\left(\mathrm{v}\mathrm{i}\mathrm{i}\right)\hfill & {Z}_1<0;\hfill \\ {}\left(\mathrm{v}\mathrm{i}\mathrm{i}\mathrm{i}\right)\hfill & {Z}_3<0;\hfill \\ {}\left(\mathrm{i}\mathrm{x}\right)\hfill & {I}_{W C},{I}_W,{I}_L<0.\hfill \end{array}$$
(8.A.37)

With the help of (8.A.37) from (8.29 and 8.34.1), we can get the following results:

$$ \left.\begin{array}{lll} {}\left(\mathrm{a}\right)\hfill & {\widehat{X}}_1<0\hfill & \mathrm{when}\;\widehat{K}>0\hfill \\ {}\left(\mathrm{b}\right)\hfill & {\widehat{X}}_1<0\hfill & \mathrm{when}\;\widehat{E}>0\hfill \\ {}\left(\mathrm{c}\right)\hfill & {\widehat{X}}_1<\left(>\right)0\hfill & \mathrm{when}\;{\widehat{P}}_2>\left(<\right)0\hfill \\ {}\left(\mathrm{d}\right)\hfill & {\widehat{P}}_2>0\hfill & \mathrm{when}\;\widehat{K}>0\hfill \\ {}\left(\mathrm{e}\right)\hfill & {\widehat{P}}_2>0\hfill & \mathrm{when}\;\widehat{E}>0\kern1em \mathrm{if}\;\left[{\lambda}_{L1}{\lambda}_{K3}\le \left(\frac{E_Y{W}^{*} L{\lambda}_{L3}}{Y}\right){\lambda}_{L2}{\lambda}_{K1}\right]\hfill \\ {}\left(\mathrm{f}\right)\hfill & {\widehat{P}}_2<0\hfill & \mathrm{when}\;\widehat{T}>0\hfill \end{array}\right\} $$
(8.A.38)

Using (8.A.34), (8.A.36) and (8.A.37) from (8.30) and (8.31), we find that X 2 decreases (increases) while X 3 increases (increases) following an inflow of foreign capital (an education subsidy policy). Besides, an increase in P 2 raises X 3. We use these results while explaining Proposition 8.3 verbally.

Finally, using (8.A.32) and (8.A.37) from Eq. (8.35.2), the following results trivially follow:

  1. (R.1)

    \( {\widehat{L}}_C<0 \) when \( \widehat{K}>0 \).

  2. (R.2)

    \( {\widehat{L}}_C<0 \) when \( \widehat{E}>0 \) if Q 2 ≥ 0 i.e. if [λ L1 λ K3 ≤ (E Y W*Lλ L3/Y)λ L2 λ K1].

  3. (R.3)

    \( {\widehat{L}}_C>0 \) when \( \widehat{T}>0 \).

Note that, in (R.2), [λ L1 λ K3 ≤ (E Y W*Lλ L3/Y)λ L2 λ K1] is only a sufficient condition for L C to fall following an education subsidy policy.

8.1.10.2 Case II

Let us now consider the case where sector 2 is more child labour-intensive relative to sector 1 with respect to adult labour. This implies the case where

$$ \left(\frac{a_{C1}}{a_{L1}}\right)<\left(\frac{a_{C2}}{a_{L2}}\right)\Rightarrow \left(\frac{\lambda_{C1}}{\lambda_{L1}}\right)<\left(\frac{\lambda_{C2}}{\lambda_{L2}}\right) $$
(8.A.39)

In this case, we find that

$$ \left.\begin{array}{l} {}\left({\theta}_{C1}{\theta}_{L2}<{\theta}_{C2}{\theta}_{L1}\right)\Rightarrow \left|\theta \right|=\left({\theta}_{L1}{\theta}_{C2}-{\theta}_{C1}{\theta}_{L2}\right)>0\\ {}\frac{\lambda_{L2}}{\lambda_{L1}}<\frac{\lambda_{C2}}{\lambda_{C1}}\Rightarrow \frac{\left(1-{\lambda}_{L3}\right)}{\lambda_{L1}}<\frac{1}{\lambda_{C1}}\Rightarrow {\lambda}_{C1}<\frac{\lambda_{L1}}{\left(1-{\lambda}_{L3}\right)}\\ {}\frac{\lambda_{C1}}{\lambda_{C2}}<\frac{\lambda_{L1}}{\lambda_{L2}}\Rightarrow \frac{1}{\lambda_{C2}}<\frac{\left(1-{\lambda}_{L3}\right)}{\lambda_{L2}}\Rightarrow {\lambda}_{C2}>\frac{\lambda_{L2}}{\left(1-{\lambda}_{L3}\right)}\\ {}\left|\lambda \right|<0\\ {}{A}_1>0\\ {}{A}_2=0\;\left(\mathrm{assuming}\kern0.5em {a}_{K1}\;\mathrm{to}\kern0.5em \mathrm{be}\kern0.5em \mathrm{given}\kern0.5em \mathrm{technologically}\right)\\ {}{A}_3>0\\ {}{Q}_1>0\\ {}{Q}_2<0\;\mathrm{if}\kern1em \left[{\lambda}_{L1}{\lambda}_{K3}\le \left(\frac{E_Y{W}^{*} L{\lambda}_{L3}}{Y}\right){\lambda}_{L2}{\lambda}_{K1}\right]\\ {}{Z}_1>0\\ {}{Z}_3>0\\ {}{I}_{W C},{I}_W>0;{I}_L<0\end{array}\right\} $$
(8.A.40)

Using (8.A.40) from (8.29) and (8.34.1), the following results follow:

$$ \left.\begin{array}{lll}\left(\mathrm{a}\right)\hfill & {\widehat{X}}_1<0\hfill & \mathrm{when}\;\widehat{K}>0\hfill \\ {}\left(\mathrm{b}\right)\hfill & {\widehat{X}}_1>0\hfill & \mathrm{when}\;\widehat{E}>0\hfill \\ {}\left(\mathrm{c}\right)\hfill & {\widehat{X}}_1<\left(>\right)0\hfill & \mathrm{when}\;{\widehat{P}}_2>\left(<\right)0\hfill \\ {}\left(\mathrm{d}\right)\hfill & {\widehat{P}}_2>0\hfill & \mathrm{when}\;\widehat{K}>0\hfill \\ {}\left(\mathrm{e}\right)\hfill & {\widehat{P}}_2<0\hfill & \mathrm{when}\;\widehat{E}>0\kern1em \mathrm{if}\;\left[{\lambda}_{L1}{\lambda}_{K3}\le \left(\frac{E_Y{W}^{*} L{\lambda}_{L3}}{Y}\right){\lambda}_{L2}{\lambda}_{K1}\right]\hfill \\ {}\left(\mathrm{f}\right)\hfill & {\widehat{P}}_2<0\hfill & \mathrm{when}\;\widehat{T}>0\hfill \end{array}\right\} $$
(8.A.41)

Using (8.A.39) and (8.A.40) from (8.30) and (8.31), we find that X 2 decreases (increases) while X 3 increases (decreases) following an inflow of foreign capital (an education subsidy policy). Besides, an increase in P 2 raises X 3. These results are useful in explaining proposition 8.4 intuitively.

Using (8.A.32) and (8.A.41) from (8.35.2), it is easy to derive the following results:

  1. (R.4)

    \( \begin{array}{lll}{\widehat{L}}_C>0\kern0.5em \mathrm{when}\kern0.5em \widehat{K}>0 \kern0.5em \mathrm{if}\kern0.5em \left[\left({I}_{W C}+{I}_L\right){Q}_1\ge \left(\frac{\lambda_{L3}}{\lambda_{K3}-{\lambda}_{L3}}\right)\right]\\ {}\kern7em \mathrm{or}\kern0.5em \mathrm{if}\kern0.5em \left[\left({I}_W+{I}_L\right){Q}_1\ge \left(\frac{\lambda_{L3}}{\lambda_{K3}-{\lambda}_{L3}}\right)\right].\end{array} \)

  2. (R.5)

    \( \begin{array}{lll}{\widehat{L}}_C<0\kern0.75em \mathrm{when}\kern0.5em \widehat{E}>0\kern0.5em \mathrm{i}\mathrm{f}\kern1em \left(\mathrm{i}\right)\kern0.5em \left({\lambda}_{L1}{\lambda}_{K3}\le \frac{\lambda_{L3}{\lambda}_{L2}{\lambda}_{K1}{E}_Y{W}^{*} L}{Y}\right)\\ {}\kern7em \mathrm{and},\kern0.5em \left(\mathrm{i}\mathrm{i}\right)\kern0.5em \left[\left({I}_{W C}+{I}_W+{I}_L\right){Q}_2\le \frac{\lambda_{L3}{\lambda}_{L2}{\lambda}_{K1}{G}_3}{\left(1-{\lambda}_{L3}\right)\left|\lambda \right|}\right].\end{array} \)

  3. (R.6)

    \( \begin{array}{lll}{\widehat{L}}_C<0\kern0.5em \mathrm{when}\kern0.5em \widehat{T}>0\kern1em \mathrm{if}\kern0.5em \left({I}_{W C}+{I}_L\right){Q}_3\le 0\\ {}\kern7em \mathrm{or},\mathrm{if}\kern0.5em \left({I}_W+{I}_L\right){Q}_3\le 0.\end{array} \)

8.1.11 Appendix 8.11: (Model 3) Derivations for Obtaining Expressions for Effects of FDI on Child Wage, Skilled and Unskilled Wages and Inequality Thereof

Totally differentiating Eqs. (8.42), (8.43.1) and (8.44) and using envelope conditions, the following expressions are obtained:

$$ {\theta}_{L1}\widehat{W}+{\theta}_{C1}{\widehat{W}}_C+{\theta}_{K1}\widehat{R}=0 $$
(8.A.42)
$$ {\theta}_{L2}{E}_W\widehat{W}+{\theta}_{K2}\widehat{R}=0 $$
(8.A.43)
$$ {\theta}_{S3}{\widehat{W}}_{\mathrm{S}}+{\theta}_{K3}\widehat{R}=0 $$
(8.A.44)

Totally differentiating Eqs. (8.45.1), (8.46), (8.47) and (8.49), collecting terms and simplifying, we get the following expressions:

$$ {\overline{S}}_{L L}\widehat{W}+{\lambda}_{L1}{S}_{L C}^1{\widehat{W}}_C+{\overline{S}}_{L K}\widehat{R}+{\lambda}_{L1}{\widehat{X}}_1+{\lambda}_{L2}{\widehat{X}}_2=0 $$
(8.A.45)
$$ {\overline{S}}_{K L}\widehat{W}+{A}_2\widehat{R}+{A}_1{\widehat{W}}_S+{\lambda}_{K1}{\widehat{X}}_1+{\lambda}_{K2}{\widehat{X}}_2=\widehat{K} $$
(8.A.46)
$$ \left({S}_{C L}^1+ E\right)\widehat{W}+\left({S}_{C C}^1- F\right){\widehat{W}}_C+ G{\widehat{W}}_{\mathrm{S}}+{\widehat{X}}_1=0 $$
(8.A.47)

(Note that we have used \( {\widehat{X}}_3=-{S}_{S S}^3{\widehat{W}}_{\mathrm{S}}-{S}_{S R}^3\widehat{R} \) from (8.47)).

where

$$ \left.\begin{array}{l}\kern2pt{\overline{S}}_{L L}=\left[{\lambda}_{L2}^{*}\left\{\left({E}_W-1\right)+{S}_{L L}^2\right\}+\left({\lambda}_{L1}{S}_{L L}^1\right)\right]<0;{\overline{S}}_{L K}={\lambda}_{L2}^{*}{S}_{L K}^2>0\\[4pt] {}{\overline{S}}_{K K}=\left({\lambda}_{K2}{S}_{K K}^2+{\lambda}_{K3}{S}_{K K}^3\right)<0;{\overline{S}}_{K L}={\lambda}_{K2}{S}_{K L}^2>0;\\[4pt] \quad \qquad {A}_1={\lambda}_{K3}\left({S}_{S K}^3+{S}_{K S}^3\right)>0\\[4pt] \kern8pt{A}_2=\left({\overline{S}}_{K K}-{\lambda}_{K3}{S}_{S K}^3\right)<0;{\lambda}_{L2}^{*}=\frac{W^{*}}{W}{\lambda}_{L2}>0\\[4pt] \quad\kern2pt A=\frac{W_S. W}{\left(1+\beta \right){L}_C{\left({W}_S- W\right)}^2}>0; B=\frac{\beta}{\left(1+\beta \right){L}_C{W}_C}>0\\[4pt] \quad\kern.8pt E=\left(- nA\left( L+ S\right)+ BLW\right); F= B\left( L W+ S{W}_S\right)>0;\\[4pt] \qquad\qquad G=\left[ nA\left(L+ S\right)+ BS{W}_S\right]>0\end{array}\right\} $$
(8.A.48)

S k ji  = the degree of substitution between factors jand i in the kth sector, j, i = L, S, L C , K and k = 1, 2, 3. S k ji  > 0 for j ≠ i; S k jj  < 0; and λ ji  = proportion of the jth input employed in the ith sector.

Arranging (8.A.42), (8.A.43), (8.A.44), (8.A.45), (8.A.46), (8.A.47) in the matrix notation, we get the following:

$$ \left[\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} {\theta}_{L1} & {\theta}_{C1} & {\theta}_{K1} & 0 & 0 & 0 \\ {} {\theta}_{L2}{E}_W & 0 & {\theta}_{K2} & 0 & 0 & 0 \\ {} 0 & 0 & {\theta}_{K3} & {\theta}_{S3} & 0 & 0 \\ {} {\overline{S}}_{L L} & {\lambda}_{L1}{S}_{L C}^1 & {\overline{S}}_{L K} & 0 & {\lambda}_{L1} & {\lambda}_{L2}^{*} \\ {} {\overline{S}}_{K L} & 0 & {A}_2 & {A}_1 & {\lambda}_{K1} & {\lambda}_{K2} \\ {} \left({S}_{C L}^1+ E\right) & \left({S}_{C C}^1- F\right) & 0 & G & 1 & 0 \end{array}\right]\left[\begin{array}{c} \widehat{W} \\ {} {\widehat{W}}_C \\ {} \widehat{R} \\ {} {\widehat{W}}_S \\ {} {\widehat{X}}_1 \\ {} {\widehat{X}}_2 \end{array}\right]=\left[\begin{array}{c} 0 \\ {} 0 \\ {} 0 \\ {} 0 \\ {} \widehat{K} \\ {} 0 \end{array}\right] $$
(8.A.49)

Solving (8.A.49) by Cramer’s rule the following expressions are obtained:

$$ \widehat{W}=-\left(\frac{\theta_{S3}{\theta}_{C1}{\theta}_{K2}{\lambda}_{L2}^{*}}{\Delta}\right)\widehat{K} $$
(8.A.50)
$$ {\widehat{W}}_C=\left(\frac{\theta_{S3}\left|\theta \right|{\lambda}_{L2}^{*}}{\Delta}\right)\widehat{K} $$
(8.A.51)
$$ \widehat{R}=\left(\frac{\theta_{S3}{\theta}_{C1}{E}_W{\theta}_{L2}{\lambda}_{L2}^{*}}{\Delta}\right)\widehat{K} $$
(8.A.52)
$$ {\widehat{W}}_S=-\left(\frac{\theta_{K3}{\theta}_{C1}{E}_W{\theta}_{L2}{\lambda}_{L2}^{*}}{\Delta}\right)\widehat{K} $$
(8.A.53)
$$ \left({\widehat{W}}_S-\widehat{W}\right)=-\left(\frac{\theta_{C1}{\lambda}_{L2}^{*}\left({\theta}_{L2}{E}_W{\theta}_{K3}-{\theta}_{S3}{\theta}_{K2}\right)}{\Delta}\right)\widehat{K} $$
(8.A.54)
$$ \begin{array}{l}{\widehat{X}}_2=\left(\frac{\widehat{K}}{\Delta}\right)\left[-{\theta}_{S3}{\lambda}_{L1}\left|\theta \right|\left\{{S}_{L C}^1-\left({S}_{C C}^1- F\right)\right\}-{\theta}_{L2}{\theta}_{C1}{E}_W\left({\theta}_{K3}{\lambda}_{L1} G+{\theta}_{S3}{\overline{S}}_{L K}\right)\right.\\ {} \ \qquad \left.+{\theta}_{C1}{\theta}_{K2}{\theta}_{S3}\left\{{\overline{S}}_{L L}-{\lambda}_{L1}\left({S}_{C L}^1+ E\right)\right\}\right]\end{array} $$
(8.A.55)

where

$$ \begin{array}{lll} \Delta &=-{\theta}_{K3}{\theta}_{C1}{E}_W{\theta}_{L2}\left\{BS{W}_S\left|\lambda \right|+{A}_1{\lambda}_{L2}^{*}\right\}-{\theta}_{S3}{\theta}_{C1}{\theta}_{L2}{E}_W\left({\overline{S}}_{L K}{\lambda}_{K2}-{A}_2{\lambda}_{L2}^{*}\right)\\ & \ \quad+{\theta}_{S3}\left|\theta \right|\left\{\left({S}_{C C}^1- F\right)\left|\lambda \right|-{\lambda}_{K2}{\lambda}_{L1}{S}_{L C}^1\right\}-{\theta}_{S3}{\theta}_{C1}{\theta}_{K2}\left\{\left({S}_{C L}^1+ BLW\right)\right.\\ &\qquad\left.\left|\lambda \right|-\left({\lambda}_{K2}{\overline{S}}_{L L}-{\lambda}_{L2}^{*}{\overline{S}}_{K L}\right)\right\}\\ & \ \quad+ nA\left( L+ S\right){\theta}_{C1}\left|\lambda \right|\left({\theta}_{K2}-{\theta}_{K3}\right)\\\end{array} $$
(8.A.56)
$$ \left.\begin{array}{c}{\left|\lambda \right|}_{L K}=\left({\lambda}_{L1}{\lambda}_{K2}-{\lambda}_{K1}{\lambda}_{L2}^{*}\right)>0\kern1em \mathrm{and}\\ {}{\left|\theta \right|}_{L K}=\left({\theta}_{L1}{\theta}_{K2}-{\theta}_{K1}{E}_W{\theta}_{L2}\right)>0\end{array}\right\} $$
(8.A.57)

(Note that |λ|, |θ| > 0 as sector 2 is more capital-intensive than sector 1 with respect to adult unskilled labour.)

Using (8.A.48) and (8.A.57) from (8.A.56), it follows that

$$ \Delta <0\kern1em \mathrm{if}\kern0.5em {\theta}_{K3}{E}_W{\theta}_{L2}>{\theta}_{K2}{\theta}_{S3} $$
(8.A.58)

However, θ K3 E W θ L2 > θ K2 θ S3 is only a sufficient condition for Δ to be negative.

Using (8.A.48), (8.A.56) and (8.A.57) from (8.A.50), (8.A.51), (8.A.52), (8.A.53), (8.A.54) and (8.A.55), we can obtain the following results:

$$ \left.\begin{array}{ll} {} \left(\mathrm{i}\right)\hfill & \widehat{W}>0\;\mathrm{when}\;\widehat{K}>0\hfill \\ {}\left(\mathrm{i}\mathrm{i}\right)\hfill & {\widehat{W}}_C<0\;\mathrm{when}\;\widehat{K}>0\hfill \\ {}\left(\mathrm{i}\mathrm{i}\mathrm{i}\right)\hfill & \widehat{R}<0\;\mathrm{when}\;\widehat{K}>0\hfill \\ {}\left(\mathrm{i}\mathrm{v}\right)\hfill & {\widehat{W}}_S>0\;\mathrm{when}\;\widehat{K}>0\hfill \\ {}\left(\mathrm{v}\right)\hfill & \left({\widehat{W}}_S-\widehat{W}\right)>0\;\mathrm{when}\;\widehat{K}>0\kern1em \mathrm{i}\mathrm{ff}\;{\theta}_{K3}{E}_W{\theta}_{L2}>{\theta}_{K2}{\theta}_{S3}\hfill \\ {}\left(\mathrm{v}\mathrm{i}\right)\hfill & {\widehat{X}}_2>0\;\mathrm{when}\;\widehat{K}>0\hfill \end{array}\right\} $$
(8.A.59)

8.1.12 Appendix 8.12: (Model 3) Effects of FDI on Incidence on Child Labour

We use Eq. (8.51) to examine the impact of foreign capital inflow on the incidence of child labour in the economy. Totally differentiating Eq. (8.51) we get

$$ {\widehat{L}}_C=- nA\left( L+ S\right)\left({\widehat{W}}_{\mathrm{S}}-\widehat{W}\right)- LBW\widehat{W}- SB{W}_{\mathrm{S}}{\widehat{W}}_{\mathrm{S}}+ B{\widehat{W}}_C\left({W}_{\mathrm{S}} S+ LW\right) $$
(8.A.60)

Using (8.A.50), (8.A.51), (8.A.52), (8.A.53) and (8.A.54), the expression (8.A.60) may be rewritten as follows:

$$ \begin{array}{lll}{\widehat{L}}_C&=\left(\frac{1}{\Delta}\right)\left[ nA\left( L+ S\right){\theta}_{C1}{\lambda}_{L2}^{*}\left({\theta}_{K3}{E}_W{\theta}_{L2}-{\theta}_{\mathrm{S}3}{\theta}_{K2}\right)+ LBW{\theta}_{\mathrm{S}3}{\theta}_{C1}{\theta}_{K2}{\lambda}_{L2}^{*}\right.\\ &\left.\quad + SB{W}_{\mathrm{S}}{\theta}_{K3}{\theta}_{C1}{\theta}_{L2}{\lambda}_{L2}^{*}+ B\left( S{W}_{\mathrm{S}}+ LW\right){\theta}_{\mathrm{S}3}\left|\theta \right|{\lambda}_{\mathrm{L}2}^{*}\right]\widehat{K}\end{array} $$
(8.A.61)

From (8.A.61) we find that

\( {\widehat{L}}_C<0 \) when \( \widehat{K}>0 \) if θ K3 E W θ L2 > θ S3 θ K2

So, the incidence of child labour decreases following inflows of foreign capital under the sufficient condition: θ K3 E W θ L2 > θ S3 θ K2. This implies that sector 3 is capital-intensive relative to sector 2. However, this result may hold under other sufficient conditions as well.

8.1.13 Appendix 8.13: (Model 3) Effects of FDI on Unemployment of Unskilled Labour

Differentiating (8.52) one gets

$$ \left(\frac{{\widehat{L}}_{\mathrm{U}}}{\widehat{K}}\right)=\left(\frac{{\widehat{X}}_2}{\widehat{K}}\right)-\left[{S}_{L K}^2{E}_W+\left(\frac{\lambda_{L2}+{\lambda}_{L U}}{\lambda_{L U}}\right)\left(1-{E}_W\right)\right]\left(\frac{\widehat{W}}{\widehat{K}}\right)+{S}_{L K}^2\left(\frac{\widehat{R}}{\widehat{K}}\right) $$
(8.A.62)

Using (8.A.50), (8.A.52) and (8.A.55) and simplifying from the above equation, we obtain

$$ \begin{array}{l}\left(\frac{{\widehat{L}}_{\mathrm{U}}}{\widehat{K}}\right)=\left(\frac{1}{\Delta}\right)\Big[\left[{\theta}_{\mathrm{S}3}\left\{{\theta}_{C1}{\theta}_{K2}\left({\overline{S}}_{L L}-{\lambda}_{L1}{S}_{C L}^1\right)-{\lambda}_{L1}\left|\theta \right|\left({S}_{L C}^1+{S}_{C L}^1+ F\right)\right\}\right.\\ \qquad\qquad\left.- nA\left( L+ S\right){\theta}_{C1}{\lambda}_{L1}\left({\theta}_{K3}{E}_W{\theta}_{L2}-{\theta}_{\mathrm{S}3}{\theta}_{K2}\right)\right]\end{array} $$
$$ \begin{array}{lll} &-\left(\frac{\theta_{C1}{\theta}_{K2}{\theta}_{\mathrm{S}3}}{\Delta}\right)\left[{\lambda}_{L1} B\left(\frac{\theta_{L2}{E}_W{\theta}_{K3} S{W}_{\mathrm{S}}}{\theta_{K2}{\theta}_{\mathrm{S}3}}+ WL\right)\right.\\ & \left.-{\lambda}_{L2}^{*}\left\{{E}_W{S}_{L K}^2+\left(\frac{\lambda_{L2}+{\lambda}_{L U}}{\lambda_{L U}}\right)\left(1-{E}_W\right)\right\}\right] \end{array} $$
(8.A.63)
$$ \begin{array}{lll} &\left(\frac{{\widehat{L}}_U}{\widehat{K}}\right)>0\kern0.5em \mathrm{if}\kern0.5em \left[\frac{\lambda_{L1}}{\lambda_{L2}^{*}} B\left(\frac{\theta_{L2}{E}_W{\theta}_{K3} S{W}_{\mathrm{S}}}{\theta_{K2}{\theta}_{\mathrm{S}3}}+ WL\right)\right.\\ & \left.\ge \left\{{E}_W{S}_{L K}^2+\left(\frac{\lambda_{L2}+{\lambda}_{L U}}{\lambda_{L U}}\right)\left(1-{E}_W\right)\right\}\right] \end{array} $$
(8.A.64)

8.1.14 Appendix 8.14: (Model 3) Effects of FDI on the Welfare of the Child Labour-Supplying Families

Differentiation of Eq. (8.37) yields

$$ dV={\widehat{C}}_1+\beta {\widehat{C}}_2 $$
(8.A.65)

Substituting the expression for l C from (8.41) into (8.38) and (8.39) and simplifying, one gets

$$ {C}_1=\left[\frac{W\left({W}_{\mathrm{S}}- W\right)+ n{W}_C{W}_{\mathrm{S}}}{\left(1+\beta \right)\left({W}_{\mathrm{S}}- W\right)}\right]\kern1em \mathrm{and} $$
(8.A.66)
$${C}_2=\beta \left[\frac{W\left({W}_{\mathrm{S}}- W\right)+ n{W}_C{W}_{\mathrm{S}}}{\left(1+\beta \right){W}_C}\right] $$
(8.A.67)

Differentiating (8.A.66) and (8.A.67) we, respectively, find

$$\begin{array}{lll} &{\widehat{C}}_1=\\ & \left[\frac{\left({W}_S\!-\!W\right)\left[ W{\left({W}_{\mathrm{S}}- W\right)}^2\widehat{W}\!+\! n{W}_C{W}_{\mathrm{S}}\left\{\left({W}_{\mathrm{S}}\!-\! W\right){\widehat{W}}_C- W\left({\widehat{W}}_{\mathrm{S}}-\widehat{W}\right)\right\}\right]}{\left[ W\left({W}_{\mathrm{S}}- W\right)+ n{W}_C{W}_{\mathrm{S}}\right]}\right.\kern0.5em \mathrm{and} \end{array} $$
(8.A.68)
$$ {\widehat{C}}_2=\left[\frac{W_C\left[ n{W}_{\mathrm{S}}{\widehat{W}}_{\mathrm{S}}+\left(\frac{W}{W_C}\right)\left\{{W}_{\mathrm{S}}{\widehat{W}}_{\mathrm{S}}+\widehat{W}\left({W}_{\mathrm{S}}-2 W\right)-\left({W}_{\mathrm{S}}- W\right){\widehat{W}}_C\right\}\right]}{\left[ W\left({W}_{\mathrm{S}}- W\right)+ n{W}_C{W}_{\mathrm{S}}\right]}\right. $$
(8.A.69)

Substitution of the expressions for \( {\widehat{C}}_1 \) and \( {\widehat{C}}_2 \) into (8.A.65) and simplification produce

$$ \begin{array}{lll} dV&=\left[\frac{1}{\left[ W\left({W}_{\mathrm{S}}- W\right)+ n{W}_C{W}_{\mathrm{S}}\right]}\right]\left[ W\left({W}_{\mathrm{S}}\!-\! W\right)\widehat{W}\left\{{\left({W}_{\mathrm{S}}\!-\! W\right)}^2\!+\! n{W}_C{W}_{\mathrm{S}}+\beta \right\}\right.\\ &\quad+\beta W\left({W}_{\mathrm{S}}{\widehat{W}}_{\mathrm{S}}- W\widehat{W}\right)\\ &\left. \quad +\left({W}_{\mathrm{S}}\!-\! W\right){\widehat{W}}_C\left\{ n{W}_C{W}_{\mathrm{S}}\left({W}_{\mathrm{S}}\!-\! W\right)\!-\!\beta W\right\}\!+\! n{W}_C{W}_{\mathrm{S}}{\widehat{W}}_{\mathrm{S}}\left\{\beta\!-\! W\left({W}_{\mathrm{S}}\!{-}\! W\right)\right\}\!\right]\end{array} $$

or

$${\begin{array}{lll} \left(\frac{d V}{d K}\right)=\left[\frac{1}{\left[ W\left({W}_{\mathrm{S}}- W\right)+ n{W}_C{W}_{\mathrm{S}}\right]}\right]\left[\left({W}_{\mathrm{S}}- W\right)\left(\frac{d W}{d K}\right)\left\{{\left({W}_{\mathrm{S}}- W\right)}^2+ n{W}_C{W}_{\mathrm{S}}+\beta \right\}\right.\\ \qquad\qquad \ \ \qquad\left(+\right)\kern10.5em \left(+\right)\kern6.5em \left(+\right)\\ \qquad\qquad+\beta W\left\{\left(\frac{d{W}_{\mathrm{S}}}{d K}\right)-\left(\frac{d W}{ d K}\right)\right\}\\ \qquad\qquad\quad\quad\qquad\qquad\left(+\right)\\ \qquad\qquad\left.+\left({W}_{\mathrm{S}}\!-\! W\right)\left(\!\frac{d{W}_C}{ d K}\!\right)\left\{n{W}_{\mathrm{S}}\left({W}_{\mathrm{S}}\!-\! W\right)\!-\!\beta \frac{W}{W_C}\right\}\!+\! n{W}_C\left(\frac{d{W}_{\mathrm{S}}}{d K}\right)\left\{\beta\! -\! W\left({W}_{\mathrm{S}}- W\right)\right\}\right]\\ \qquad\qquad\qquad\qquad\qquad\left(-\right)\kern14.5em \left(+\right)\end{array}}$$
(8.A.70)

From (8.A.70) it follows that

$$ \left(\frac{dV}{dK}\right)>0\kern1em \mathrm{if}\kern0.5em \beta W\ge n{W}_C{W}_{\mathrm{S}}\left({W}_{\mathrm{S}}- W\right) $$
(8.A.71)

As n ≥ 1, W S > W and W C  < W, from (8.A.71), it follows that

$$ \left(\frac{dV}{dK}\right)>0\kern1em \mathrm{if}\kern0.5em \beta \ge n{W}_{\mathrm{S}}\left({W}_{\mathrm{S}}- W\right) $$
(8.A.72)

However, from (8.A.70) it is easily seen that β ≥ nW S(W S − W) is only a sufficient condition for (dV/dK) > 0. One can find out several other sufficient conditions under which (dV/dK) > 0.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Chaudhuri, S., Mukhopadhyay, U. (2014). FDI and Child Labour. In: Foreign Direct Investment in Developing Countries. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1898-2_8

Download citation

Publish with us

Policies and ethics