Skip to main content

Convergence of Slices, Geometric Aspects in Banach Spaces and Proximinality

  • Chapter
  • First Online:
Nonlinear Analysis

Part of the book series: Trends in Mathematics ((TM))

Abstract

Some geometric properties of Banach spaces and proximinality properties in best approximation theory are characterized in terms of convergence of slices. The paper begins with some basic geometric properties of Banach spaces involving slices and their geometric interpretations. Two notions of convergence of sequence sets, called Vietoris convergence and Hausdorff convergence, with their characterizations are presented. It is observed that geometric properties such as uniform convexity, strong convexity, Radon-Riesz property, and strong subdifferentiability of the norm can be characterized in terms of the convergence of slices with respect to the notions mentioned above. Proximinality properties such as approximative compactness and strong proximinality of closed convex subsets of a Banach space are also characterized in terms of convergence of slices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asplund, E., Rockafellor, R.T.: Gradients of convex functions. Trans. Amer. Math. Soc. 139, 443–467 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  2. Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics, vol. 60. Marcel Dekker Inc, New York (1980)

    Google Scholar 

  3. Banaś, J., Sadarangani, K.: Compactness conditions and strong subdifferentiability of a norm in geometry of banach spaces. Nonlinear Anal. 49, 623–629 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beer, C.: Topologies on Closed and Closed Convex Sets. Kluwer Academic Publishers, London (1993)

    Google Scholar 

  5. Bishop, E., Phelps, R.R.: A proof that every banach space is subreflexive. Bull. Amer. Math. Soc. 67, 97–98 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bollabas, B.: An extension to the theorem of bishop and phelps. Bull. London Math. Soc. 2, 181–182 (1970)

    Article  MathSciNet  Google Scholar 

  7. Chakraborty, A.K.: Some contributions to set-valued and convex analysis. Ph.D. Thesis, IIT, Kanpur (2006)

    Google Scholar 

  8. Chakraborty, A.K., Shunmugaraj, P., Zălinescu, C.: Continuity properties for the subdifferential and \(\varepsilon \)-subdifferential of a convex function and its conjugate. J. Convex Anal. 14, 479–514 (2007)

    MathSciNet  Google Scholar 

  9. Dolecki, S., Rolewicz, S.: Metric characterizations of upper semicontinuity. J. Math. Anal. Appl. 69, 146–152 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dutta, S., Narayana, D.: Strongly proximinal subspaces in Banach spaces. Contemp. Math. Amer. Math. Soc. 435, 143–152 (2007)

    Google Scholar 

  11. Dutta, S., Narayana, D.: Strongly proximinal subspaces of finite codimension in \(c(k)\). Colloquium Math. 109, 119–128 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dutta, S., Shunmugaraj, P.: Strong proximinality of closed convex sets. J. Approx. Theor. 163, 547–553 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fabian, M., Habala, P., Hajek, P., Montesinos, V., Pelant, J., Zizler, V.: Functional Analysis and Infinite Dimensional Geometry. Springer, New York (2001)

    Google Scholar 

  14. Fan, K., Glicksberg, I.: Some geometric properties of the sphere in a normed linear space. Duke Math. J. 25, 553–568 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  15. Franchetti, C., Payá, R.: Banach spaces with strongly subdifferentiable norm. Boll. Un. Mat. Ital. B 7, 45–70 (1993)

    MATH  MathSciNet  Google Scholar 

  16. Giles, J.R.: Convex Analysis with Application in the Differentiation of Convex Functions. Pitman Advanced Publishing Program, Boston (1982)

    Google Scholar 

  17. Giles, J.R., Gregory, D.A., Sims, B.: Geometrical implications of upper semi-continuity of the duality mapping on a banach space. Pacific J. Math. 79, 99–109 (1978)

    Article  MathSciNet  Google Scholar 

  18. Giles, J.R., Sims, B., Yorke, A.C.: On the drop and weak drop properties for banach space. Bull. Austral. Math. Soc. 41, 503–507 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Giles, J.R., Sciffer, S.: On weak hadamard differentiability of convex functions on banach spaces. Bull. Austral. Math. Soc. 54, 155–166 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Godefroy, G., Indumathi, V.: Strong proximinality and polyhedral spaces. Rev. Mat. Complut. 14, 105–125 (2001)

    MATH  MathSciNet  Google Scholar 

  21. Godefroy, G., Indumathi, V.: Norm-to-weak upper semi-continuity of the duality and pre-duality mappings. Set-Valued Anal. 10, 317–330 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Godefroy, G., Indumathi, V., Lust-Piquard, F.: Strong subdifferentiability of convex functionals and proximinality. J. Approx. Theor. 116, 397–415 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gregory, D.A.: Upper semicontinuity of sub-differential mappings. Canad. Math. Bull. 23, 11–19 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  24. Holmes, R.B.: Geometric Functional Analysis and Its Applications. Springer, New York (1975)

    Google Scholar 

  25. Hu, Z., Lin, B.-L.: Smoothness and the asymptotic-norming properties of banach spaces. Bull. Austral. Math. Soc. 45, 285–296 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Indumathi, V.: Proximinal and strongly proximinal subspaces of finite co-dimension. Report, Pondicherry University, Pondicherry (2010)

    Google Scholar 

  27. James, R.C.: Characterizations of reflexivity. Studia Math. 23, 205–216 (1964)

    MATH  MathSciNet  Google Scholar 

  28. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1969)

    Google Scholar 

  29. Megginson, R.E.: An Introduction to Banach Space Theory. Springer, New York (1998)

    Google Scholar 

  30. Osman, E.V.: On the continuity of metric projections in banach spaces. Math. USSR Sb. 9, 171–182 (1969)

    Article  Google Scholar 

  31. Sonntag, Y., Zălinescu, C.: Set convergence : an attempt of classifications. Trans. Amer. Math. Soc. 340, 199–226 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  32. Šmulian, V.L.: On some geometrical properties of the sphere in a space of the type (B). Mat. Sb. (N.S.) 6, 77–94 (1939)

    Google Scholar 

  33. Šmulian, V.L.: Sur la dérivabilité de la norme dans l’espace de Banach. C. R. (Doklady) Acad. Sci. URSS (N.S.) 27, 643–648 (1940)

    Google Scholar 

  34. Vlasov, L.P.: Approximative properties of sets in normed linear spaces (Russian). Uspehi Mat. Nauk. (Russian Math. Surveys 28, 1–66 (1973)) 28, 3–66 (1973)

    Google Scholar 

  35. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Google Scholar 

  36. Zhang, Z., Shi, Z.: Convexities and approximateive compactness and continuity of metric projection in banach spaces. J. Approx. Theory 161, 802–812 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Shunmugaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Shunmugaraj, P. (2014). Convergence of Slices, Geometric Aspects in Banach Spaces and Proximinality. In: Ansari, Q. (eds) Nonlinear Analysis. Trends in Mathematics. Birkhäuser, New Delhi. https://doi.org/10.1007/978-81-322-1883-8_3

Download citation

Publish with us

Policies and ethics