Skip to main content

Contribution of Bioinformatics to Gene Discovery in Salt Stress Responses in Plants

  • Chapter
  • First Online:
Agricultural Bioinformatics

Abstract

Salinity is the major abiotic stress leading to huge losses in crop productivity. Therefore, understanding the regulatory mechanisms and subsequently improving salinity tolerance in plants are important goals for plant biologists. Salinity tolerance depends upon the ability of plants to exclude salts, the compartmentalization of sodium (Na+) into vacuoles and acquisition of potassium (K+) to cope with osmotic stress and to maintain ion homeostasis. The availability of complete genome sequences coupled with effective and high-throughput methods has helped us in identifying many genes associated with salt stress. The tools of bioinformatics have allowed us to identify stress-associated gene families across species based on homology and gene synteny. Besides, whole genome sequencing, cDNA libraries related to stress tolerance, and genome-wide association studies have facilitated the discovery of stress-related genes. This vital information from both halophytic and glycophytic species coupled with the isolation of potential target genes associated with salt stress tolerance helps in crop breeding programs aimed at generating salt stress-tolerant crop plants.

*Contributed equally

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal GK, Rakwal R (2006) Rice proteomics, a cornerstone for cereal food crop proteomes. Mass Spectrom Rev 25:1–53. doi:10.1002/mas.20056

    CAS  PubMed  Google Scholar 

  • Amrutha RN, Jogeswar G, Srilakshmi P, Kavi Kishor PB (2007) Rubidium chloride tolerant callus cultures of rice (Oryza sativa L.) accumulate more potassium and cross tolerate to other salts. Plant Cell Rep 26:1647–1662. doi:10.1007/s00299-007-0353-4

    CAS  Google Scholar 

  • Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2:3–13. doi:10.1093/mp/ssn094

    CAS  PubMed Central  PubMed  Google Scholar 

  • An R, Chen QJ, Chai MF, Lu PL, Su Z, Qin ZX, Chen J, Wang XC (2007) AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant J 49:718–728. doi:10.1111/j.1365-313X.2006.02990.x

    CAS  PubMed  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258. doi:10.1126/science.285.5431.1256

    CAS  PubMed  Google Scholar 

  • Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36:229–239. doi:10.1046/j.1365-313X.2003.01871.x

    CAS  PubMed  Google Scholar 

  • Arazi T, Kaplan B, Formm H (2000) A high affinity Calmodulin-binding site in a tobacco plasma-membrane channel protein coincide with a characteristic element of cyclic nucleotide binding domains. Plant Mol Biol 42:591–601. doi:10.1023/A:1006345302589

    CAS  PubMed  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. doi:10.1093/nar/gkp335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signalling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15:365–379. doi:10.1105/tpc.006999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banuelos MA, Garciadeblas B, Cubero B, Rodriguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–795. doi:10.1104/pp. 007781

    PubMed Central  PubMed  Google Scholar 

  • Bassil E, Ohto MA, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E (2011) The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell 23:224–239. doi:10.1105/tpc.110.079426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434. doi:http://dx.doi.org/10.1016/S0955-0674(00)00112-5

  • Boscari A, Clement M, Volkov V, Golldack D, Hybiak J, Miller AJ, Amtmann A, Fricke W (2009) Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. Plant Cell Environ 32:1761–1777. doi:10.1111/j.1365-3040.2009.02033.x

    CAS  PubMed  Google Scholar 

  • Bressan RA, Park HC, Orsini F et al (2013) Biotechnology for mechanisms that counteract salt stress in extremophile species: a genome-based view. Plant Biotechnol Rep 7:27–37. doi:10.1007/s11816-012-0249-9

    Google Scholar 

  • Burge CB, Karlin S (1998) Finding the genes in genomic DNA. Curr Opin Struct Biol 8:346–354. doi:10.1016/S0959-440X(98)80069-9

    CAS  PubMed  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10. doi:10.1186/1471-2229-4-10

    PubMed Central  PubMed  Google Scholar 

  • Chanroj S, Wang G, Venema K, Zhang MW, Delwiche CF, Sze H (2012) Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants. Front Plant Sci 3:25. doi:10.3389/fpls.2012.00025

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciarmiello LF, Woodrow P, Fuggi A, Pontecorvo G, Carillo P (2011) Plant genes for abiotic stress. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants-mechanisms and adaptations. Venkateswarlu Intech, Rijeka

    Google Scholar 

  • Cukkemane A, Seifert R, Kaupp UB (2011) Cooperative and uncooperative cyclic-nucleotide-gated ion channels. Trends Biochem Sci 36:55–64. doi:10.1016/j.tibs.2010.07.004

    CAS  PubMed  Google Scholar 

  • Dahl S, Sylte I, Ravna A (2004) Structures and models of transporter proteins. J Pharmacol Exp Ther 309:853–860. doi:10.1124/jpet.103.059972

    CAS  PubMed  Google Scholar 

  • Dani V, Simon WJ, Duranti M, Croy RR (2005) Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5:737–745. doi:10.1002/pmic.200401119

    CAS  PubMed  Google Scholar 

  • Dassanayake M, Oh D, Haas JS, Hernandez A, Hong H, Ali S, Yun D, Bressan RA, Zhu J, Bohnert HJ, Cheesman JM (2011) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43:913–918. doi:10.1038/ng.889

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeBolt S (2010) Copy number variation shapes genome diversity in Arabidopsis over immediate family generational scales. Genome Biol Evol 2:441–453. doi:10.1093/gbe/evq033

    PubMed Central  PubMed  Google Scholar 

  • Demuth JP, Hahn MW (2009) The life and death of gene families. Bioessays 31:29–39. doi:10.1002/bies.080085

    PubMed  Google Scholar 

  • Deng W, Maust BS, Nickle DC, Learn GH, Liu Y, Heath L, Kosakovsky Pond SL, Mulins JI (2010) DIVEIN: a web server to analyse phylogenies, sequence divergence, diversity and informative sites. Biotechniques 48:405–408. doi:10.2144/000113370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elumalai RP, Nagpal P, Reed JW (2002) A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell 14:119–131. doi:10.1105/tpc.010322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016. doi:10.1006/jmbi.2000.3903

    CAS  PubMed  Google Scholar 

  • Fang Z, Polacco M, Chen S, Schroeder S, Hancock D, Sanchez H, Coe E (2003) cMap: the comparative genetic map viewer. Bioinformatics 19:416–417. doi:10.1093/bioinformatics/btg012

    CAS  PubMed  Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340:245–246. doi:10.1038/340245a0

    CAS  PubMed  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815. doi:10.1093/nar/gks1094

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garciadeblas B, Senn ME, Banuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801. doi:10.1046/j.1365-313X.2003.01764.x

    CAS  PubMed  Google Scholar 

  • Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96:1480–1485. doi:10.1073/pnas.96.4.1480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gierth M, Maser P (2007) Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581:2348–2356. doi:10.1016/j.febslet.2007.03.035

    CAS  PubMed  Google Scholar 

  • Gierth M, Maser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K1 uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114. doi:10.1104/pp.104.057216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJM (2006) Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57:791–800. doi:10.1093/jxb/erj064

    CAS  PubMed  Google Scholar 

  • Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839. doi:10.1111/j.1365-313X.2005.02587.x

    CAS  PubMed  Google Scholar 

  • Grabov A (2007) Plant KT/KUP/HAK potassium transporters: single family-multiple functions. Ann Bot 99:1035–1041. doi:10.1093/aob/mcm066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    CAS  PubMed  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026. doi:10.1360/yc-007-1023

    CAS  PubMed  Google Scholar 

  • Guo KM, Babourina O, Christopher DA, Borsics T, Rebgel Z (2008) The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. Physiol Plant 134:499–507. doi:10.1111/j.1399-3054.2008.01157.x

    CAS  PubMed  Google Scholar 

  • Harlan JR (1995) The living fields: our agricultural heritage. Cambridge University Press, New York

    Google Scholar 

  • Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10:551–564. doi:10.1038/nrg2593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27:129–138. doi:10.1046/j.1365-313x.2001.01077.x

    CAS  PubMed  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587. doi:10.1093/nar/gkm259

    PubMed Central  PubMed  Google Scholar 

  • Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727. doi:10.1104/pp. 106.088864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang YS, Horton M, Vilhjálmsson BJ, Seren U, Meng D, Meyer C, Amer MA, Borevitz JO, Bergelson J, Nordborg M (2011) Analysis and visualization of Arabidopsis thaliana GWAS using web 2.0 technologies. Database 2011:1–17. doi:10.1093/database/bar014

    Google Scholar 

  • Jaspers P, Blomster T, Brosché M, Salojarvi J, Ahlfors R, Vainonen JP, Reddy RA, Immink R, Angenent G, Turck F, Overmyer K, Kangasjarvi J (2009) Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. Plant J 60:268–279. doi:10.1111/j.1365-313X.2009.03951.x

    CAS  PubMed  Google Scholar 

  • Karley AJ, Leigh RA, Sanders D (2000) Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley. Plant Physiol 122:835–844. doi:10.1104/pp. 122.3.835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905. doi:http://dx.doi.org/10.1105/tpc.13.4.889

  • Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10:51–62. doi:10.1105/tpc.10.1.51

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koehler C, Neuhaus G (2000) Characterization of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana. FEBS Lett 471:133–136. doi:10.1016/S0014-5793(00)01383-1

    Google Scholar 

  • Kohler C, Merkle T, Roby D, Neuhaus G (2001) Developmentally regulated expression of a cyclic nucleotide-gated ion channel from Arabidopsis indicates its involvement in programmed cell death. Planta 213:327–332. doi:10.1007/s004250000510

    CAS  PubMed  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. doi:10.1006/jmbi.2000.4315

    CAS  PubMed  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645. doi:10.1101/gr.092759.109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kvitek DJ, Will JL, Gasch AP (2008) Variations in stress sensitivity and genomic expression in diverse Saccharomyces cerevisiae isolates. PLoS Genet 4:1–18. doi:10.1371/journal.pgen.1000223

    Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    CAS  PubMed  Google Scholar 

  • Lauchli A, James RA, Huang CX, McCully M, Munns R (2008) Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant Cell Environ 31:1565–1574. doi:10.1111/j.1365-3040.2008.01864.x

    CAS  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Phan Tran L (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276. doi:10.1093/dnares/dsr015

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lugan R, Niogret MF, Leport L, Guégan JP, Larher FR, Savouré A, Kopka J, Bouchereau A (2010) Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant J 64:215–229. doi:10.1111/j.1365-313X.2010.04323.x

    CAS  PubMed  Google Scholar 

  • Ma Y, Qin F, Phan Tran L (2012) Contribution of genomics to gene discovery in plant abiotic stress responses. Mol Plant 5:1176–1178. doi:10.1093/mp/sss085

    CAS  PubMed  Google Scholar 

  • Maathuis FJM (2007) Monovalent cation transporters; establishing a link between bioinformatics and physiology. Plant Soil 301:1–15. doi:10.1007/s11104-007-9429-8

    CAS  Google Scholar 

  • Maathuis FJM, Sanders D (1997) Regulation of K+ absorption in plant root cells by external K+: interplay of different plasma membrane K+ transporters. J Exp Bot 48:451–458. doi:10.1093/jxb/48

    CAS  PubMed  Google Scholar 

  • Mochida K, Shinozaki K (2011) Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant Cell Physiol 52:2017–2038. doi:10.1093/pcp/pcr153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2009) In silico analysis of transcription factor repertoire and prediction of stress responsive transcription factors in soybean. DNA Res 16:353–369. doi:10.1093/dnares/dsp023

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178. doi:10.1105/tpc.108.064568

    PubMed Central  PubMed  Google Scholar 

  • Moore CA, Bowen HC, Scrase-Field S, Knight MR, White PJ (2002) The deposition of suberin lamellae determines the magnitude of cytosolic Ca2+ elevations in root endodermal cells subjected to cooling. Plant J 30:457–465. doi:10.1046/j.1365-313X.2002.01306.x

    CAS  PubMed  Google Scholar 

  • Morsy M, Gouthu S, Orchard S, Thorneycroft D, Harper JF, Mittler R, Cushman JC (2008) Charting plant interactomes: possibilities and challenges. Trends Plant Sci 13:183–191. doi:10.1016/j.tplants.2008.01.006

    CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001.00808.x

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911

    CAS  PubMed  Google Scholar 

  • Orlowski J, Grinstein S (1997) Na+/H+ exchangers of mammalian cells. J Biol Chem 272:22373–22376. doi:10.1074/jbc.272.36.22373

    CAS  PubMed  Google Scholar 

  • Peck SC (2005) Update on proteomics in Arabidopsis. Where do we go from here? Plant Physiol 138:591–599. doi:10.1105/tpc.107.050989

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pérez-Clemente RM, Vives V, Zandalinas SI, López-Climent MF, Muñoz V, Gómez-Cadenas A (2013) Biotechnological approaches to study plant responses to stress. BioMed Res Int 2013:1–10. doi:10.1155/2013/654120

    Google Scholar 

  • Peterson CA, Murrmann M, Steudle E (1993) Location of the major barriers to water and ion movement in young roots of Zea-mays L. Planta 190:127–136. doi:10.1007/BF00195684

    CAS  Google Scholar 

  • Reddy AS, Ben-Hur A, Day IS (2011) Experimental and computational approaches for the study of calmodulin interactions. Phytochemistry 72:1007–1019. doi:10.1016/j.phytochem.2010.12.022

    CAS  PubMed  Google Scholar 

  • Rigas S, Debrosses G, Haralampidis K, Vicente-Agullo F, Feldmann KA, Grabov A, Dolan L, Hatzopoulos P (2001) TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13:139–151. doi:10.1105/tpc.13.1.139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez M, Canales E, Borras-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnol Apl 22:1–10

    CAS  Google Scholar 

  • Rodríguez-Rosales MP, Gálvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K (2009) Plant NHX cation/proton antiporters. Plant Signal Behav 4:265–276. doi:10.4161/psb.4.4.7919

    PubMed Central  PubMed  Google Scholar 

  • Rubio F, Santa-Maria GE, Rodrıguez-Navarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant 109:34–43. doi:10.1034/j.1399-3054.2000.100106.x

    CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A 97:6896–6901. doi:10.1073/pnas.120170197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long distance Na+ transport in plants. Plant Cell 14:465–477. doi:10.1105/tpc.010371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shingaki-Wells RN, Huang S, Taylor NL, Carroll AJ, Zhou W, Millar AH (2011) Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance. Plant Physiol 156:1706–1724. doi:10.1104/pp. 111.175570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432. doi:10.1093/bioinformatics/btq675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soderlund C, Bomhoff M, Nelson WM (2011) SyMAP v3.4: a turnkey synteny system with application to plant genomes. Nucleic Acids Res 39:1–9. doi:10.1093/nar/gkr123

    Google Scholar 

  • Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M, Tsalenko A, Sampas N, Bruhn L, Shendure J, Eichler EE (2010) Diversity of human copy number variation and multicopy genes. Science 330:641–646. doi:10.1126/science.1197005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sunkar R, Kaplan B, Bouche N, Arazi T, Dolev D, Talke IN, Maathuis FJM, Sanders D, Bouchez D, Fromm H (2008) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24:533–542. doi:10.1111/j.1365-313X.2000.00901.x

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tester M, Davenport RJ (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527. doi:10.1093/aob/mcg058

    CAS  PubMed  Google Scholar 

  • Tyerman SD, Skerrett IM (1999) Root ion channels and salinity. Sci Hortic 78:175–235. doi:10.1016/S0304-4238(98)00194-0

    CAS  Google Scholar 

  • Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Akio T, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1260. doi:10.1104/pp. 122.4.1249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Bel M, Proost S, Wischnitzki E, Mohavedi S, Scheerlinck C, Van De Peer Y, Vandepoele K (2011) Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol 158:590–600. doi:10.1104/pp. 111.189514

    PubMed Central  PubMed  Google Scholar 

  • Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J et al (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:1–15. doi:10.1038/msb.2011.39

    Google Scholar 

  • Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5:361–380. doi:10.1111/j.1467-7652.2007.00239.x

    CAS  PubMed  Google Scholar 

  • Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Takabe T (2001) Halotolerant cyanobacterium Aphanothece halophytica contains an Na+/H+ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail. J Biol Chem 276:36931–36938. doi:10.1074/jbc. M103650200

    CAS  PubMed  Google Scholar 

  • Ward JM, Maser P, Schroeder JI (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Annu Rev Physiol 71:59–82. doi:10.1146/annurev.physiol.010908.163204

    CAS  PubMed  Google Scholar 

  • Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao Q, Wright G, Bader GD, Morris Q (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–W220. doi:10.1093/nar/gkq537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waterhouse RM, Zdobnov EM, Kriventseva EV (2011) Correlating traits of gene retention, sequence divergence, duplicability and essentiality in vertebrates, arthropods and fungi. Genome Biol Evol 3:75–86. doi:10.1093/gbe/evq083

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wegner LH, Raschke K (1994) Ion channels in the xylem parenchyma of barley roots. Plant Physiol 105:799–813. doi:10.1104/pp. 105.3.799

    CAS  PubMed Central  PubMed  Google Scholar 

  • White PJ (1999) The molecular mechanism of sodium influx to root cells. Trends Plant Sci 4:245–246. doi:10.1016/S1360-1385(99)01435-1

    PubMed  Google Scholar 

  • White PJ (2001) The pathways of calcium movement to the xylem. J Exp Bot 52:891–899. doi:10.1093/jexbot/52.358.891

    CAS  PubMed  Google Scholar 

  • Witters E, Laukens K, Deckers P, Van Dongen W, Esmans E, Van Onckelen H (2003) Fast liquid chromatography coupled to electrospray tandem mass spectrometry peptide sequencing for cross-species protein identification. Rapid Commun Mass Spectrom 17:2188–2194. doi:10.1002/rcm.1173

    CAS  PubMed  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244. doi:10.1002/pmic.200400853

    CAS  PubMed  Google Scholar 

  • Yang Z, Gao Q, Sun C, Li W, Gu S, Xu C (2009) Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.). J Genet Genomics 36:161–172. doi:10.1016/S1673-8527(08)60103-4

    CAS  PubMed  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539. doi:10.1046/j.1365-313X.2002.01309.x

    CAS  PubMed  Google Scholar 

  • Yoshioka K, Moeder W, Kang HG, Kachroo P, Masmoudi K, Berkowitz G, Klessig DF (2006) The chimeric Arabidopsis cyclic nucleotide-gated ion channel11/12 activates multiple pathogen resistance responses. Plant Cell 18:747–763. doi:10.1105/tpc.105.038786

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhorov BS, Tikhonov DB (2004) Potassium, sodium, calcium and glutamate-gated channels: pore architecture and ligand action. J Neurochem 88:782–799. doi:10.1111/j.1471-4159.2004.02261.x

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Kavi Kishor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Kumari, P.H., Kumar, S.A., Suravajhala, P., Jalaja, N., Giri, P.R., Kavi Kishor, P.B. (2014). Contribution of Bioinformatics to Gene Discovery in Salt Stress Responses in Plants. In: P.B., K., Bandopadhyay, R., Suravajhala, P. (eds) Agricultural Bioinformatics. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1880-7_6

Download citation

Publish with us

Policies and ethics