Skip to main content

Bioinformatic Tools in the Analysis of Determinants of Pathogenicity and Ecology of Entomopathogenic Fungi Used as Microbial Insecticides in Crop Protection

  • Chapter
  • First Online:
Agricultural Bioinformatics

Abstract

Insect pathogenic fungi have a huge potential as microbial components of biopesticides which serve as benign components in plant protection. The infection cycle of these fungi is well known. Realising their potential and scope to improve their utility in phytomedicine, extensive work on the molecular biology of pathogenesis has been done in the past decade. Wet bench techniques like gene isolation, cloning and characterisation and gene knockout experiments to transcriptomics techniques like cDNA-AFLP, microarray, qPCR, cDNA, EST and SSH library construction, as well as whole genome sequencing and analysis of data with a suite of bioinformatic tools and pipelines integrated with several biological databases, were done to understand the process/processes involved at each stage of the infection cycle of the insect pathogenic fungi. These are in particular adherence of spores to the insect cuticle, factors that aid in coping with the physical stress conditions in the surrounding environment, formation of an infection peg, penetrance into the insect, factors that abet in overcoming insect defence systems and growth in the insect, production of toxic secondary metabolites that lead to insect death and surfacing out from the insect cadaver as well as sporulating to iterate the infection cycle on yet another insect. The picture that emerged is detailed in this chapter. The genes/proteins involved and the analyses that aided in their identification are described. Environmental genomics through multitag 454 pyrosequencing of rRNA sequence reads in deciphering the effect of the inundative application of an entomopathogenic fungus on the native soil fungal diversity is described. The chapter highlights the bioinformatics-bolstered investigation of the factors that influence the affectivity of insect pathogenic fungi as microbial biopesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Amiri-Besheli B, Khambay S, Cameron S et al (2000) Inter-and intra-specific variation in destruxin production by insect pathogenic Metarhizium spp. and its significance to pathogenesis. Mycol Res 104:447–4452

    CAS  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC et al (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bagga S, Hu G, Screen SE, Leger RJ (2004) Reconstruction the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene 324:159–169

    CAS  PubMed  Google Scholar 

  • Baldwin TK, Winnenburg R, Urban M et al (2006) The pathogen-host interactions database (PHI-base) provides insights into generic and novel themes of pathogenicity. Mol Plant Microbe Interact 19:1451–1462

    CAS  PubMed  Google Scholar 

  • Baratto CM, Dutra V, Boldo JT et al (2006) Isolation characterization and transcriptional analysis of the chitinase chi2 gene (DQ011663) from the biocontrol fungus Metarhizium anisopliae var anisopliae. Curr Microbiol 53:217–221

    CAS  PubMed  Google Scholar 

  • Billich A, Zocher RJ (1987) Enzymatic synthesis of cyclosporin A. J Biol Chem 262:17258–17259

    CAS  PubMed  Google Scholar 

  • Bingle LEH, Simpson TJ, Lazarus CM (1999) Ketosynthase domain probes identify two subclasses of fungal polyketide synthase genes. Fungal Gen Biol 26:209–223

    CAS  Google Scholar 

  • Bisset J (1983) Notes on Tolypocladium and related genera. Can J Bot 61:1311–1329

    Google Scholar 

  • Boucias DG, Pendland JC, Latge JP (1988) Nonspecific factors involved in attachment of entomopathogenic deuteromycetes to host insect cuticle. Appl Environ Microbiol 54:1795–1805

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buée M, Reich M, Murat C et al (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    PubMed  Google Scholar 

  • Butt TM, Goettel MS (2000) Bioassays of entomogenous fungi. In: Navon A, Ascher KRS (eds) Bioassays of entomopathogenic microbes and nematodes. CABI Publishing, Wallingford, pp 141–195

    Google Scholar 

  • Butt TM, Ibrahim L, Ball BY et al (1994) Pathogenicity of the entomogenous fungi Metarhizium anisopliae and Beauveria bassiana against crucifer pests and the honey bee. Biocontrol Sci Technol 4:207–214

    Google Scholar 

  • Butt TM, Jackson C, Magan N (2001) Production, stabilization and formulation of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CABI Publishing, Wallingford, pp 1–8

    Google Scholar 

  • Butterrs JA, Devi KU, Mohan MC et al (2003) Screening for tolerance to Bavistin, a Benzimidazole fungicide containing methyl benzimidazol-2-yl carbamate (MBC) among strains of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin: sequence analysis of the Beta – tubulin gene to identify mutations conferring tolerance. Mycol Res 107:260–266

    Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carlos LM, Palmieri DA, Souza VQ et al (2008) SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genomics 4:363–374

    Google Scholar 

  • Castlebury LA, Sutherland JB, Tanne LA et al (1999) Use of a bioassay to evaluate the toxicity of beauvericin to bacteria. World J Microbiol Biotechnol 15:131–133

    CAS  Google Scholar 

  • Cerenius L, Thornqvist PO, Vey A et al (1990) The effect of the fungal toxin destruxin E on isolated crayfish hemocytes. J Insect Physiol 36:785–789

    CAS  Google Scholar 

  • Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Chao A, Lee SM (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217

    Google Scholar 

  • Charnley AK (1989) Mechanisms of fungal pathogenesis in insects. In: Whipps JM, Lumsden RD (eds) Biotechnology of fungi for improving plant growth. Oxford University Press, London, pp 86–125

    Google Scholar 

  • Charnley AK (2003) Fungal pathogens of insects: cuticle degrading enzymes and toxins. Adv Bot Res 40:241–321

    CAS  Google Scholar 

  • Charnley AK, Leger RJ (1991) The role of cuticle-degrading enzymes in fungal pathogenesis in insects. In: Cole RT, Hoch HE (eds) Fungal spore disease initiation in plants and animals. Plenum Press, New York/London, pp 267–287

    Google Scholar 

  • Chu M, Mierzwa R, Truumees I et al (1993) 2 novel diketopiperazines isolated from the fungus Tolypocladium sp. Tetrahedron Lett 34:7537–7540

    CAS  Google Scholar 

  • Clarkson JM, Charnley AK (1996) New insights into mechanisms homology modeling and protein engineering strategy of subtilases of fungal pathogenesis in insects. Trends Microbio 4:197–203

    CAS  Google Scholar 

  • Claros MG, Vincens P (1996) Computational method to predict mitochondrial proteins and their target sequences. Eur J Bio 241:779–786

    CAS  Google Scholar 

  • Clowee RK (2006) Estimates: statistical estimation of species richness and shared species from samples.version8, user guide and application published at http://purl.oclc.org/estimates

  • Cole JR, Chai B, Farris RJ et al (2007) The ribosomal database project (RDP-II): introducing my RDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cook RJ (2000) Advances in plant health management in the 20th century. Annu Rev Phytopathol 38:95–116

    CAS  PubMed  Google Scholar 

  • De Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Google Scholar 

  • De Santis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Google Scholar 

  • Dias BA, Neves PMOJ, Furlaneto Maia L et al (2008) Cuticle-degrading proteases produced by the entomopathogenic fungus Beuaveria bassiana in the presence of coffee berry borer cuticle. Braz J Microbiol 39:301–306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donatti AC (2008) Production and regulation of cuticle degrading proteases from Beauveria bassiana in the presence of Rhammatocerus schistocercoides cuticle. Curr Microbiol 56:256–260

    CAS  PubMed  Google Scholar 

  • Doytchinova IA, Flower DR (2008) Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine J 1:22–26

    CAS  Google Scholar 

  • Dumas C, Robert P, Pais M et al (1994) Insecticidal and cytotoxic effects of natural and hemi synthetic destruxins. Comp Biochem Physiol 108:195–203

    CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113

    Google Scholar 

  • El-Sayed GN, Coudron TA, Ignoffo CM (1989) Chitinolytic activity and virulence associated with native and mutant isolates of an entomopathogenic fungus Nomuraea rileyi. J Invertebr Pathol 54:394–403

    Google Scholar 

  • El-Sayed GN, Ignof LTD et al (1993) Cuticular and non-cuticular substrate influence on expression of cuticle degrading enzymes non-cuticular substrate influence on expression of cuticle degrading enzymes. Mycopathologia 122:79–87

    CAS  Google Scholar 

  • Enkerli J, Widmer F, Gessler C et al (2001) Strain-specific microsatellite markers in the entomopathogenic fungus Beauveria brongniartii. Mycol Res 105:1079–1087

    CAS  Google Scholar 

  • Faircloth BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94

    CAS  PubMed  Google Scholar 

  • Falgueras J, Lara AJ, Fernandez-Pozo N et al (2010) SeqTrim: a high-throughput pipeline for pre-processing any type of sequence read. BMC Bioinformatics 11:38

    PubMed Central  PubMed  Google Scholar 

  • Fang W, Leng B, Xiao Y et al (2005) Cloning of Beauveria bassiana chitinase gene Bbchitl and its application to improve fungal strain virulence. Appl Environ Microbiol 71:363–370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fang W, Pava-Ripoll M, Wang SB et al (2009) Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus Metarhizium anisopliae. Fungal Genet Biol 46:277–285

    CAS  PubMed  Google Scholar 

  • Fang W, Fernandes EKK, Roberts DW et al (2010) A laccase exclusively expressed by Metarhizium anisopliae during isotropic growth is involved in pigmentation, tolerance to abiotic stresses and virulence. Fungal Genet Biol 42:602–607

    Google Scholar 

  • Freimoser FM, Screen S, Bagga S et al (2003) Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149:239–247

    CAS  PubMed  Google Scholar 

  • Freimoser EM, Hu G, Leger RJ (2005) Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Microbiology 151:361–371

    CAS  PubMed  Google Scholar 

  • Gao Q, Jin K, Ying SH et al (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 7:1–18

    Google Scholar 

  • Gibson DM, Krasnoff SB, Churchill ACL (2007) Searching for polyketides in insect pathogenic fungi. In: Rimando AM, Baerson SR (eds) Polyketides: biosynthesis, biological activity, and genetic engineering, vol 955. American Chemical Society, Washington, DC, pp 48–67

    Google Scholar 

  • Giongo A, Crabb DB, Davis-Richardson AG et al (2010) PANGEA: pipeline for analysis of next generation amplicons. ISME J 4:854–861

    Google Scholar 

  • Goettel MS, Hajek AE, Siegel JP et al (2001) Safety of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CABI Publishing, Wallingford, pp 347–376

    Google Scholar 

  • Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14:611–650

    CAS  PubMed  Google Scholar 

  • Gupta S, Roberts DW, Renwick JAA (1989) Preparative isolation of destruxins from Metarhizium anisopliae by high performance liquid chromatography. J Liq Chromatogr 12:383–395

    CAS  Google Scholar 

  • Gupta S, Krasnoff SB, Roberts DW et al (1992) Structure of efrapeptins from the fungus Tolypocladium niveum: peptide inhibitors of mitochondrial ATPase. J Org Chem 57:2306–2313

    CAS  Google Scholar 

  • Gupta S, Montillot C, Hwang YS (1994) Isolation of novel beauvericin analogues from the fungus Beauveria bassiana. J Nat Prod 58:733–738

    Google Scholar 

  • Hagn A, Pritsch K, Ludwig W et al (2003) Fungal diversity in agricultural soil under different farming management systems, with special reference to biocontrol strains of Trichoderma spp. Biol Fert Soils 38:236–244

    CAS  Google Scholar 

  • Hamill RL, Higgens CE, Boaz HE et al (1969) The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Lett 49:4255–4258

    CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Hane JK, Lowe RG, Solomon PS et al (2007) Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell 19:3347–3368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartman AL, Riddle S, McPhillips T et al (2010) Introducing W.A.T.E.R.S: a workflow for the alignment, taxonomy, and ecology of ribosomal sequences. BMC Bioinformatics 11:317

    PubMed Central  PubMed  Google Scholar 

  • Hirsch J, Galidevara S, Strohmeier S et al (2013) Effects on diversity of soil fungal community and fate of an artificially applied Beauveria bassiana strain assessed through 454 pyrosequencing. Microb Ecol. doi:10.1007/s00248-013-0249-5

    Google Scholar 

  • Holder DJ, Kirkland BH, Lewis MW et al (2007) Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 153:3448–3457

    CAS  PubMed  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a programme to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    CAS  PubMed  Google Scholar 

  • Humber RA (1991) Fungal pathogens of aphids. In: Peters DC, Webster JA, Chlouber CS (eds) Proceedings on aphid plant interactions: populations to molecules still water. Okla State University, pp 45–56

    Google Scholar 

  • Hurlbert SH (1971) The non-concept of species diversity: a critique and alternative parameters. Ecology 52:577–586

    Google Scholar 

  • Huse SM, Huber JA, Morrison HG et al (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143–R143.9

    PubMed Central  PubMed  Google Scholar 

  • Huson DH, Mitra S, Ruscheweyh HJ et al (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–1560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson CW, Heale JB, Hall RA (1985) Traits associated with virulence to the aphid Macrosiphoniella sanborni in eighteen isolates of Verticillium lecanii. Ann Appl Biol 106:39–48

    Google Scholar 

  • Jackson MA, Dunlap CA, Jaronski ST (2010) Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl 55:129–145

    Google Scholar 

  • Kamper J, Kahmann R, Bölker M et al (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101

    PubMed  Google Scholar 

  • Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537:39–64

    CAS  PubMed  Google Scholar 

  • Khaldi N, Seifuddin FT, Turner G et al (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47:736–741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khan AAP (2006) A comparative transcriptomic analysis of the generalist entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin grown on different insect cuticles and synthetic medium through cDNA-AFLP display. Dissertation, Andhra University, Visakhapatnam, India

    Google Scholar 

  • Khan AAP, Uma Devi K, Vogel H et al (2007) Analysis of differential gene expression in the generalist entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin grown on different insect cuticular extracts and synthetic medium through cDNA-AFLPs. Fungal Genet Biol 44:1231–1241

    Google Scholar 

  • Khan S, Guo L, Maimaiti Y et al (2012) Entomopathogenic fungi as microbial biocontrol agent. Mol Plant Breed 3:63–79

    Google Scholar 

  • Kim HK, Hoe HS, Suh D et al (1999) Gene structure and expression of the gene from Beauveria bassiana encoding bassiasinI, an insect cuticle-degrading serine protease. Biotechnol Lett 21:777–783

    CAS  Google Scholar 

  • Krasnoff SB, Reátegui RF, Wagenaar MM et al (2004) Cicadapeptins I and II: new Aib-containing peptides from the entomopathogenic fungus Cordyceps heteropoda. J Nat Prod 68:50–55

    Google Scholar 

  • Kulkarni RD, Kelkar HS, Dean RA (2003) An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem Sci 28:118–121

    CAS  PubMed  Google Scholar 

  • Kumar S, Carlsen T, Mevik BH et al (2011) CLOTU: an online application for processing and clustering of 454 amplicon reads into OTUs followed by taxonomic annotation. BMC Bioinformatics 12:1–9

    Google Scholar 

  • Lacey LA, Goettel M (1995) Current development in microbial control of insect pests and prospects for the early 21st century. Entomophaga 40:3–27

    Google Scholar 

  • Lacey LA, Frutos R, Kaya HK et al (2001) Insect pathogens as biological control agents: Do they have a future? Biol Control 21:230–248

    Google Scholar 

  • Lafon A, Han KH, Seo JA et al (2006) G-protein and cAMP mediated signaling in aspergilli: a genomic perspective. Fungal Genet Biol 43:490–502

    CAS  PubMed  Google Scholar 

  • Li Y, Kelly WG, Logsdon JM Jr et al (2004) Functional genomic analysis of the ADP-ribosylation factor family of GTPases: phylogeny among diverse eukaryotes and function in C. elegans. FASEB J 18:1834–1850

    CAS  PubMed  Google Scholar 

  • Lin L, Fang W, Liao X et al (2011) The MrCYP52 Cytochrome P450 Monooxygenase Gene of Metarhizium robertsii Is Important for Utilizing Insect Epicuticular Hydrocarbons. PLoS ONE 6:e28984

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu S, Peng G, Xia Y (2012) The adenylate cyclase gene MaAC is required for virulence and multi-stress tolerance of Metarhizium acridum. BMC Microbiol 12:163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mahé S, Duhamel M, Le Calvez TL (2012) PHYMYCO-DB: a curated database for analyses of fungal diversity and evolution. PLoS ONE 7:e431117

    Google Scholar 

  • McCune B, Mefford MJ (2011) PC-ord. Multivariate analysis of ecological data, version 6.MjM Software, Gleneden Beach, Oregon, U.S.A

    Google Scholar 

  • Medema MH, Blin K, Cimermancic P et al (2011) antiSMASH rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Molnar I, Gibson DM, Krasnoff SB (2010) Secondary metabolites from entomopathogenic Hypocrealean fungi. Nat Prod Rep 27:1241–1275

    CAS  PubMed  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    CAS  PubMed  Google Scholar 

  • Nelson DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369:1–10

    CAS  PubMed  Google Scholar 

  • Oksanen J, Kindt R, Legendre P et al (2007) vegan: Community Ecology Package. R package version 1.8-8. Online at: http://r-forge.r-project.org/projects/vegan

  • Ortiz de Montellano PR (2005) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Press, New York, p 689

    Google Scholar 

  • Pandey RV, Nolte V, Schlotterer C (2010) CANGS: a user-friendly utility for processing and analyzing 454 GS-FLX data in biodiversity studies. BMC Res Notes 3:3

    PubMed Central  PubMed  Google Scholar 

  • Pedrini N, Zhang S, Juarez MP et al (2010) Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana. Microbiology 156:2549–2557

    CAS  PubMed  Google Scholar 

  • Petrosino JF, Highlander S, Luna RA et al (2009) Metagenomic pyrosequencing and microbial identification. Clin Chem 55:856–866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pollard A, Wyn Jones KG (1979) Enzyme activities in concentrate solutions of glycine-betaine and other solutes. Planta 144:291–298

    CAS  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quince C, Lanzen A, Curtis TP et al (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6:639–641

    CAS  PubMed  Google Scholar 

  • Rappleye CA, Goldman WE (2008) Fungal stealth technology. Trends Immunol 29:18–24

    CAS  PubMed  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40:D343–D350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear 1 ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97:84–98

    CAS  PubMed  Google Scholar 

  • Roberts DW, St Leger RJ (2004) Metarhizium spp., cosmopolitan insect pathogenic fungi: mycological aspects. Adv Appl Microbiol 54:1–70

    CAS  PubMed  Google Scholar 

  • Samuels RI, Charnley AK, Reynolds SE (1988) The role of destruxins in the pathogenicity of 3strains of Metarhizium anisopliae for the tobacco hornworm Manduca sexta. Mycopathologia 104:51–58

    CAS  Google Scholar 

  • Scheepmaker JWA, Butt TM (2010) Natural and released inoculum levels of entomopathogenic fungal biocontrol agents in soil in relation to risk assessment and in accordance with EU regulations. Biocontrol Sci Technol 20:503–552

    Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer programme for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2006) Introducing Tree Climber, a test to compare microbial community structures. Appl Environ Microbiol 72:2379–2384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Screen S, Bailey A, Charnley K et al (1997) Carbon regulation of the cuticle-degrading enzyme PR1 from Metarhizium anisopliae may involve a trans-acting DNA-binding protein CRR1, a functional equivalent of the Aspergillus nidulans CREA protein. Curr Genet 31:511–518

    CAS  PubMed  Google Scholar 

  • Shah FA, Wang CS, Butt TM (2005) Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 251:259–266

    CAS  PubMed  Google Scholar 

  • Singleton DR, Furlong MA, Rathbun SL et al (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376

    CAS  PubMed Central  PubMed  Google Scholar 

  • Small CLN, Bidochka MJ (2005) Up-regulation of Pr1, a subtilisin-like protease, during conidiation in the insect pathogen Metarhizium anisopliae. Mycol Res 109:307–313

    CAS  PubMed  Google Scholar 

  • Solomon PS, Tan KC, Sanchez P et al (2004) The disruption of a G alpha subunit sheds new light on the pathogenicity of Stagonospora nodorum on wheat. Mol Plant Microbe Interact 17:456–466

    CAS  PubMed  Google Scholar 

  • St Leger RJ, Wang C (2009) Entomopathogenic fungi and the genomic era. In: Stock SP, Vandenberg J, Glazer I, Boemare N (eds) Insect pathogens: molecular approaches and techniques. CABI Publishing, Wallingford, pp 366–400

    Google Scholar 

  • St Leger RJ, Joshi L, Bidochka MJ et al (1995) Protein synthesis in Metarhizium anisopliae growing on host cuticle. Mycol Res 99:1034–1040

    CAS  Google Scholar 

  • St Leger RJ, Joshi L, Bidochka MJ et al (1996) Characterization and ultra structural localization of chitinases’ from Metarhizium anisopliae, Metarhizium. flavoviride and Beauveria bassiana during fungal invasion of host (Manduca sexta) cuticle. Appl Environ Microbiol 62:907–912

    CAS  Google Scholar 

  • St Leger RJ, Joshi L, Roberts DW (1997) Adaptation of proteases and carbohydrates of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 143:1983–1992

    CAS  PubMed  Google Scholar 

  • Sun Y, Cai Y, Liu L et al (2009) ESPRIT: estimating species richness using large collections of 16S rRNA pyrosequences. Nucleic Acids Res 37:e76

    PubMed Central  PubMed  Google Scholar 

  • Thomas MB, Read AF (2007) Fungal bioinsecticide with a sting. Nat Biotechnol 25:1367–1368

    CAS  PubMed  Google Scholar 

  • Uma Devi K, Padmavathi J, Uma Maheswara Rao C et al (2008) A study of host specificity in the entomopathogenic fungus Beauveria bassiana (Hypocreales, Clavicipitaceae). Biocontrol Sci Technol 18:975–989

    Google Scholar 

  • Uma Devi K, Reineke G, Sandhya G et al (2012) Pathogenicity genes in entomopathogenic fungi used as biopesticides. In: Gupta VK, Ayyachamy M (eds) Biotechnology of fungal genes. Science Publishers, Enfield, pp 343–367

    Google Scholar 

  • Vega FE, GoettelMS BM et al (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159

    Google Scholar 

  • Vestergaard S, Gillespie AT, Butt TM et al (1995) Pathogenicity of the hyphomycete fungi Verticillium lecanii and Metarhizium anisopliae to the western flower thrips, Frankliniella occidentalis. Biocontrol Sci Technol 5:185–192

    Google Scholar 

  • Wang C, St Leger RJ (2005) Developmental and transcriptional responses to host and non host cuticles by the specific locus pathogen Metarhizium anisopliae var.acridum. Eukaryot Cell 4:937–947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang C, St Leger RJ (2006) A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci 103:6647–6652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang C, St Leger RJ (2007a) The Metarhizium anisopliae perilipin homologMPL1regulates lipid metabolism, appressorial turgor pressure, and virulence. J Biol Chem 282:21110–21115

    CAS  PubMed  Google Scholar 

  • Wang C, St Leger RJ (2007b) The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects and the MAD2 adhesin enables attachment to plants. Eukaryot Cell 6:808–816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang CS, Hu G, St Leger RJ (2005) Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genet BioI 42:704–718

    CAS  Google Scholar 

  • Wang CS, Duan ZB, Leger RJ (2008) MOS1osmosensor of Metarhizium anisopliae is required for adaptation to insect host hemolymph. Eukaryot Cell 7:302–309

    PubMed Central  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution Bioinformatics 24:2098–2100

    CAS  Google Scholar 

  • Wraight SP, Jackson MA, de Kock SL (2001) Production, stabilization and formulation of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CABI Publishing, Wallingford, pp 253–287

    Google Scholar 

  • Wraight SP, Ramos ME, Williams JE et al (2003) Comparative virulence and host specificity of Beauveria bassiana isolates assayed against lepidopteran pests of vegetable crops. J Invertebr Pathol 103:186–199

    Google Scholar 

  • Wu D, Hartman A, Ward N et al (2008) An automated phylogenetic tree-based small subunit rRNA taxonomy and alignment pipeline (STAP). PLoS ONE 3(7):e2566

    PubMed Central  PubMed  Google Scholar 

  • Wu GD, Lewis JD, Hoffmann C et al (2010) Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiol 30:206

    Google Scholar 

  • Xia Y, Clarkson JM, Charnley AK (2001) Acid phosphatases of Metarhizium anisopliae during infection of the tobacco hornworm Manduca sexta. Arch Microbiol 176:427–434

    CAS  PubMed  Google Scholar 

  • Xiao G, Ying SH, Zheng P et al (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483

    PubMed Central  PubMed  Google Scholar 

  • Xu Y, Orozco R, Wijeratne EM et al (2008) Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chem Biol 15:898–907

    CAS  PubMed  Google Scholar 

  • Xu Y, Orozco R, Kithsiri Wijeratne EM et al (2009) Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genet Biol 46:53–364

    Google Scholar 

  • Xue QX, Wang J, Huang BF et al (2010) A new manganese superoxide dismutase identified from Beauveria bassiana enhances virulence and stress tolerance when over expressed in the fungal pathogen. Appl Microbiol Biotechnol 86:1543–1553

    Google Scholar 

  • Yu Y, Breitbart M, McNairnie P et al (2006) FastGroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics 7:57

    PubMed Central  PubMed  Google Scholar 

  • Zhang W, Yueqing C, Yuxian X (2008) Cloning of the subtilisin Pr1A gene from a strain of locust specific fungus Metarhizium anisopliae and functional expression of the protein in Pichia pastoris. World J Microbiol Biotechnol 24:2481–2488

    CAS  Google Scholar 

  • Zhang Y, Zhao J, Fang W et al (2009) Mitogen-activated protein kinase hog1 in the entomopathogenic fungus Beauveria bassiana regulates environmental stress responses and virulence to insects. Appl Environ Microbiol 75:3787–3795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Zhang J, Jiang X et al (2010) Requirement of a mitogen-activated protein kinase for appressorium formation and penetration of insect cuticle by the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 76:2262–2270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng P, Xia Y, Xiao G et al (2011) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 12:R116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu Y, Pan J, Qiu J et al (2008) Isolation and characterization of a chitinase gene from entomopathogenic fungus Verticillium lecanii. Appl Environ Microbiol 39:314–332

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to DST-DFG and DST-DAAD PPP programmes for financial support in carrying out collaborative research on entomopathogenic fungi. Mrs. Sandhya is thankful to CSIR, New Delhi, for a senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Devi Koduru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Koduru, U.D., Galidevara, S., Reineke, A., Pathan, A.A.K. (2014). Bioinformatic Tools in the Analysis of Determinants of Pathogenicity and Ecology of Entomopathogenic Fungi Used as Microbial Insecticides in Crop Protection. In: P.B., K., Bandopadhyay, R., Suravajhala, P. (eds) Agricultural Bioinformatics. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1880-7_13

Download citation

Publish with us

Policies and ethics