Skip to main content

Bioinformatics Strategies Associated with Important Ethnic Medicinal Plants

  • Chapter
  • First Online:
  • 1848 Accesses

Abstract

Plants have been used as a source of medicine since historic times, and herbal drugs play an important role in the treatment of various ailments. Several commercially important modern medicines are of plant-based origin. One of the main purposes to investigate medicinal plants is to understand the main extracts from plants like alkaloids, flavonoids, etc., which can be used as therapeutics for human diseases. Bioinformatics play a crucial role in the analysis and interpretation of high-throughput data generated using molecular biology-based techniques. Bioinformatics approaches leverage plant-based knowledge discovery by offering new tools for the identification of genes and pathways involved in the production of secondary metabolites and also help to identify therapeutically important active compounds. Here we review bioinformatics strategies associated with important ethnic medicinal plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AP-1:

Activator protein 1

BAX:

BCL2-associated X protein

Bcl-2:

B-cell lymphoma 2

cAMP:

Cyclic adenosine monophosphate

c-Fos:

Cellular oncogene Fos

CREB:

cAMP response element-binding protein

COX2:

Cyclo oxygenase2

CYP3A4:

Cytochrome P450, family 3, subfamily A, polypeptide 4

Egf:

Epidermal growth factor

EST:

Expressed sequence tags

HTML:

HyperText Markup Language

HTTP:

Hypertext Transfer Protocol

IKK:

I kappa B kinase

IUPAC:

International Union of Pure and Applied Chemistry

MCF-7:

Michigan Cancer Foundation-7 (Breast cancer cell line)

MDR:

Multi drug resistance

NF-KB:

Nuclear transcription factor kappa B

NIK:

NF-κB-inducing kinase

ODC:

Ornithine decarboxylase

PhP:

Hypertext preprocessor

RDBMS:

Relational Database Management System

SQL:

Structured Query Language

TNF-α:

Tumour necrosis factor alpha

TPA:

Tissue plasminogen activator

References

  • Ahmad S, Garg M, Ali M et al (2009) A phyto-pharmacological overview on Adhatoda zeylanica Medic. syn. A. vasica (Linn.) Nees. Nat Prod Radiance 8:549–554

    Google Scholar 

  • Ahmad N, Fazal H, Abbasi BH, Farooq S, Ali M, Khan MA (2012) Biological role of Piper nigrum L. (black pepper): a review. Asian Pac J Trop Biomed 2:S1945–S1953

    Article  Google Scholar 

  • Ali BH, Blunden G, Tanira MO, Nemmar A (2008) Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 46(2):409–420

    Article  CAS  PubMed  Google Scholar 

  • Amroyan E, Gabrielian E, Panossian A, Wikman G, Wagner H (1999) Inhibitory effect of andrographolide from Andrographis paniculata on PAF-induced platelet aggregation. Phytomedicine 6:27–31

    Article  CAS  PubMed  Google Scholar 

  • Austin A (2008) A review on Indian Sarsaparilla, Hemidesmus indicus. J Biol Sci 8:1–12

    Article  CAS  Google Scholar 

  • Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78:431–441

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj RK, Glaeser H, Becquemont L, Klotz U, Gupta SK, Fromm MF (2002) Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 302(2):645–650

    Article  CAS  PubMed  Google Scholar 

  • Bharti AC, Donato N, Singh S, Aggarwal BB (2003) Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101:1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Bisht VK, Negi JS, Bhandari AK, Sundriyal RC (2011) Anti-cancerous plants of Uttarakhand Himalaya: a review. Int J Cancer Res 7:192–208

    Article  Google Scholar 

  • Bode AM, Ma WY, Surh YJ, Dong Z (2001) Inhibition of epidermal growth factor-induced cell transformation and activator protein 1 activation by [6]-gingerol. Cancer Res 61(3):850–853

    CAS  PubMed  Google Scholar 

  • Briskin DP (2000) Update on phytomedicines medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol 124:507–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calabrese C, Berman SH, Babish JG, Ma X, Shinto L, Dorr M, Wells K, Wenner CA, Standish LJ (2000) A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res 14:333–338

    Article  CAS  PubMed  Google Scholar 

  • Chang RS, Ding L, Chen GQ, Pan QC, Zhao ZL, Smith KM (1991) Dehydroandrographolide succinic acid monoester as an inhibitor against the human immunodeficiency virus. Proc Soc Exp Biol Med 97:59–66

    Article  Google Scholar 

  • Chen HC, Hsieh WT, Chang WC, Chung JG (2004) Aloe-emodin induced in vitro G2/M arrest of cell cycle in human promyelocytic leukemia HL-60 cells. Food Chem Toxicol 42:1251–1257

    Article  CAS  PubMed  Google Scholar 

  • Chen YY, Chiang SY, Lin JG (2010) Emodin, aloe-emodin and rhein induced DNA damage and inhibited DNA repair gene expression in SCC-4 human tongue cancer cells. Anticancer Res 30:945–952

    PubMed  Google Scholar 

  • Chiu TH, Lai WW, Hsia TC et al (2009) Aloe-emodin induces cell death through S-phase arrest and caspase-dependent pathways in human tongue squamous cancer SCC-4 cells. Anticancer Res 29:4503–4511

    CAS  PubMed  Google Scholar 

  • Chou S-T, Lai C-P, Lin C-C, Shih Y (2012) Study of the chemical composition, antioxidant activity and anti-inflammatory activity of essential oil from Vetiveria zizanioides. Food Chem 134:262–268

    Article  CAS  Google Scholar 

  • Coon JT, Ernst E (2004) Andrographis paniculata in the treatment of upper respiratory tract infections: a systematic review of safety and efficacy. Planta Med 70:293–298

    Article  CAS  PubMed  Google Scholar 

  • Dey A, De JN (2010) Rauvolfia serpentine (L). Benth.exKurz – a review. Asian J Plant Sci 9:285–298

    Article  Google Scholar 

  • Edwards D, Batley J (2004) Plant bioinformatics: from genome to phenome. Trends Biotechnol 22:232–237

    Article  CAS  PubMed  Google Scholar 

  • Fahey JW, Sc D (2005) Moringa oleifera : a review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Tree Life J 1:5

    Google Scholar 

  • Gohil KJ, Patel JA, Gajjar AK (2010) Pharmacological review on Centella asiatica: a potential herbal cure-all. Indian J Pharm Sci 72:546–556

    Article  PubMed Central  PubMed  Google Scholar 

  • Guo ZL, Zhao HY, Zheng XH (1995) An experimental study of the mechanism of Andrographis paniculata Nees (APN) in alleviating the Ca (2+)-overloading in the process of myocardial ischemic reperfusion. J Tongji Med Univ 15:205–208

    Article  CAS  PubMed  Google Scholar 

  • Han S-S, Keum Y-S, Seo H-J, Surh Y-J (2002) Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Mol Biol 35:337–342

    Article  CAS  PubMed  Google Scholar 

  • Jadhav VM, Thorat RM, Kadam VJ, Salaskar KP (2009) Chemical composition, pharmacological activities of Eclipta alba. J Pharm Res 2:18–20

    Google Scholar 

  • Jarukamjorn K, Nemoto N (2008) Pharmacological aspects of Andrographis paniculata on health and its major diterpenoid constituent andrographolide. J Health Sci 54:370–381

    Article  CAS  Google Scholar 

  • Kakarala M, Brenner DE, Korkaya H, Cheng C, Tazi K, Ginestier C, Liu S, Dontu G, Wicha MS (2011) Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat 122(3):777–785

    Article  Google Scholar 

  • Khan KH (2009) Roles of Emblica officinalis in medicine – a review. Bot Res Int 2:218–228

    CAS  Google Scholar 

  • Krishna KL, Paridhavi M, Patel JA (2008) Review on nutritional, medicinal and pharmacological properties of Papaya (Carica papaya Linn.). Nat Prod Radiance 7:364–373

    Google Scholar 

  • Kumar RA, Sridevi K, Kumar NV, Nanduri S, Rajagopal S (2004) Anticancer and immunostimulatory compounds from Andrographis paniculata. J Ethnopharmacol 92:291–295

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Singhal V, Roshan R, Sharma A, Rembhotkar GW, Ghosh B (2007) Piperine inhibits TNF-alpha induced adhesion of neutrophils to endothelial monolayer through suppression of NF-kappaB and IkappaB kinase activation. Eur J Pharmacol 575(1–3):177–186

    Article  CAS  PubMed  Google Scholar 

  • Kuo PL, Lin TC, Lin CC (2002) The antiproliferative activity of aloe-emodin is through p53-dependent and p21-dependent apoptotic pathway in human hepatoma cell lines. Life Sci 71:1879–1892

    Article  CAS  PubMed  Google Scholar 

  • Lai LH, Fu QH, Liu Y, Jiang K, Guo QM, Chen QY, Yan B, Wang QQ, Shen JG (2012) Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1murine breast cancer model. Acta Pharmacol Sin 33(4):523–530

    Article  CAS  PubMed  Google Scholar 

  • Lee HZ (2001) Protein kinase C involvement in aloe-emodin and emodin-induced apoptosis in lung carcinoma cell. Br J Pharmacol 134:1093–1103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li S, Wang C, Wang M, Li W, Matsumoto K, Tang Y (2007) Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci 80:1373–1381

    Article  CAS  PubMed  Google Scholar 

  • Li S, Lei Y, Jia Y, Li N, Wink M, Ma Y (2011) Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells. Phytomedicine 19(1):83–87

    Article  CAS  PubMed  Google Scholar 

  • Mahalakshmi V, Ortiz R (2001) Plant genomics and agriculture: from model organisms to crops, the role of data mining for gene discovery. Electron J Biotechnol 4(3):169–178

    Google Scholar 

  • Mahesh AR, Kumar H, Mk R, Devkar RA (2012) Detail study on Boerhaavia diffusa plant for its medicinal importance – a review. Res J Pharm Sci 1:28–36

    Google Scholar 

  • Maity P, Hansda D, Bandyopadhyay U, Mishra DK (2009) Biological activities of crude extracts and chemical constituents of Bael, Aegle marmelos (L.) Corr. Indian J Exp Biol 47(11):849–861

    CAS  PubMed  Google Scholar 

  • Manoharan S, Balakrishnan S, Menon VP, Alias LM, Reena AR (2009) Chemopreventive efficacy of curcumin and piperine during 7,12 dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Singapore Med J 50(2):139–146

    CAS  PubMed  Google Scholar 

  • Matsuda T, Kuroyanagi M, Sugiyama S, Umehara K, Ueno A, Nishi K (1994) Cell differentiation-inducing diterpenes from Andrographis paniculata Nees. Chem Pharm Bull 42:1216–1225

    Article  CAS  PubMed  Google Scholar 

  • Matthews DE (2003) Grain genes, the genome database for small-grain crops. Nucleic Acids Res 31:183–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mukherjee PK, Balasubramanian R, Saha K et al (1996) A review on Nelumbo nucifera Gaertn. Anc Sci Life 15:268–276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, Aggarwal BB (2001) Curcumin down regulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20:7597–7609

    Article  CAS  PubMed  Google Scholar 

  • Nandal U, Bhardwaj RL (2012) Aloe vera for human nutrition, health and cosmetic use – a review. Int Res J Plant Sci 3:38–46

    Google Scholar 

  • Pankaj S, Lokeshwar T, Mukesh B, Vishnu B (2011) Review on neem (Azadirachta indica): thousand problems one solution. Int Res J Pharm 2:97–102

    Google Scholar 

  • Park YJ, Wen J, Bang S, Park SW, Song SY (2006) [6]-Gingerol induces cell cycle arrest and cell death of mutant p53-expressing pancreatic cancer cells. Yonsei Med J 47(5):688–697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park BS, Son DJ, Park YH, Kim TW, Lee SE (2007) Antiplatelet effects of acid amides isolated from the fruits of Piper longum L. Phytomedicine 14(12):853–855

    Article  CAS  PubMed  Google Scholar 

  • Patel B, Das S, Prakash R, Yasir M (2010) Natural bioactive compound with anticancer potential. Int J Adv Pharm Sci 1:32–41

    Article  CAS  Google Scholar 

  • Paterson AH, Freeling M, Sasaki T (2005) Grains of knowledge: genomics of model cereals. Genome Res 15:1643–1650

    Article  CAS  PubMed  Google Scholar 

  • Plummer SM, Holloway KA, Manson MM, Munks RJ, Kaptein A, Farrow S, Howells L (1999) Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene 18:6013–6020

    Article  CAS  PubMed  Google Scholar 

  • Pradeep CR, Kuttan G (2004) Piperine is a potent inhibitor of nuclear factor-kappaB (NF-kappaB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. Int Immunopharmacol 4(14):1795–1803

    Article  CAS  PubMed  Google Scholar 

  • Pradhan P, Joseph L, Gupta V et al (2009) Saraca asoca (Ashoka): a review. J Chem Pharm Res 1:62–71

    Google Scholar 

  • Puri A, Saxena R, Saxena RP, Saxena KC, Srivastava VTJ (1993) Immunostimulant agents from Andrographis paniculata. J Nat Prod 56:995–999

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal S, Kumar RA, Deevi DS, Satyanarayana C, Rajagopalan R (2003) Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J Exp Ther Oncol 3:147–158

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy L, Tizard IR (1998) Induction of apoptosis in a macrophage cell line RAW 264.7 by acemannan, a beta-(1,4)-acetylated mannan. Mol Pharmacol 53:415–421

    CAS  PubMed  Google Scholar 

  • Sankhala LN, Saini RK, Saini BS (2012) A review on chemical and biological properties of Tinospora cordifolia. Int J Med Aroma Plant 2:340–344

    Google Scholar 

  • Satyanarayana C, Deevi DS, Rajagopalan R, Srinivas N, Rajagopal S (2004) DRF 3188 a novel semi-synthetic analog of andrographolide: cellular response to MCF 7 breast cancer cells. BMC Cancer 4:26

    Article  PubMed Central  PubMed  Google Scholar 

  • Scartezzini P, Speroni E (2000) Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol 71:23–43

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Sarkar IN (2012) Bioinformatics opportunities for identification and study of medicinal plants. Brief Bioinform 14(2):238–250. doi:10.1093/bib/bbs021

    Article  PubMed Central  PubMed  Google Scholar 

  • Shen YC, Chen CF, Chiou WF (2002) Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect. Br J Pharmacol 135:399–406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh VK, Singh AK, Chand R, Kushwaha C (2011) Role of bioinformatics in agriculture and sustainable development. Int J Bioinform Res 3:221–226

    Google Scholar 

  • Singh N, Verma P, Pandey BR, Bhalla M (2012) Review article therapeutic potential of Ocimum sanctum in prevention and treatment of cancer and exposure to radiation: an overview. Int J Pharm Sci Drug Res 4:97–104

    Google Scholar 

  • Sudharani D, Krishna KL, Deval K, Safia AKP (2011) Pharmacological profiles of Bacopa monnieri: a review. Int J Pharm 1:15–23

    Google Scholar 

  • Sukardiman H, Widyawaruyanti A, Sismindari, Zaini NC (2007) Apoptosis inducing effect of andrographolide on TD-47 human breast cancer cell line. Afr J Tradit Comp Altern Med 4:345–351

    CAS  Google Scholar 

  • Thomson PDR (2004) PDR for herbal medicines, 3rd edn. PDR, Montvale

    Google Scholar 

  • Vijayakumar RS, Surya D, Nalini N (2004) Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress. Redox Rep 9(2):105–110

    Article  CAS  PubMed  Google Scholar 

  • Vishwabhan S, Birendra VK, Vishal S (2011) A review on ethnomedical uses of Ocimum sanctum (Tulsi). Int Res J Pharm 2:1–3

    Google Scholar 

  • Wang W, Zhang L, Li N, Zu Y (2012) Chemical composition and in vitro antioxidant, cytotoxicity activities of Zingiber officinale Roscoe essential oil. Afr J Biochem Res 6:75–80

    Google Scholar 

  • Wattanathorn J, Chonpathompikunlert P, Muchimapura S, Priprem A, Tankamnerdthai O (2008) Piperine, the potential functional food for mood and cognitive disorders. Food Chem Toxicol 46(9):3106–3110

    Article  CAS  PubMed  Google Scholar 

  • Wilken R, Veena MS, Wang MB, Srivatsan ES (2011) Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 10:12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wongpa S, Himakoun L, Soontornchai S, Temcharoen P (2007) Antimutagenic effects of piperine on cyclophosphamide-induced chromosome aberrations in rat bone marrow cells. Asian Pac J Cancer Prev 8(4):623–627

    PubMed  Google Scholar 

  • Yu US, Lee SH, Kim YJ, Kim S (2004) Bioinformatics in the post-genome era. J Biochem Mol Biol 37:75–82

    Article  CAS  PubMed  Google Scholar 

  • Zargar M, Azizah AH, Roheeyati AM et al (2011) Bioactive compounds and antioxidant activity of different extracts from Vitex negundo leaf. J Med Plant Res 5:2525–2532

    CAS  Google Scholar 

  • Zhao HY, Fang WY (1991) Antithrombotic effects of Andrographis paniculata Nees in preventing myocardial infarction. Chin Med J 104:770–775

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

James, P., Silpa, S., Keshavachandran, R. (2014). Bioinformatics Strategies Associated with Important Ethnic Medicinal Plants. In: P.B., K., Bandopadhyay, R., Suravajhala, P. (eds) Agricultural Bioinformatics. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1880-7_10

Download citation

Publish with us

Policies and ethics