A Fast Digital-Geometric Approach for Granulometric Image Analysis

  • Sahadev Bera
  • Arindam Biswas
  • Bhargab B. Bhattacharya
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 266)


A simple algorithm for automated analysis of granulometric images consisting of touching or overlapping convex objects such as coffee bean, food grain, is presented. The algorithm is based on certain underlying digital-geometric features embedded in their snapshots. Using the concept of an outer isothetic cover and geometric convexity, the separator of two overlapping objects is identified. The objects can then be isolated by removing the isothetic covers and the separator. The technique needs only integer computation and its termination time can be controlled by choosing a resolution parameter. Experimental results on coffee beans and other images demonstrate the efficiency and robustness of the proposed method compared to earlier watershed-based algorithms.


Granulometric image analysis Outer isothetic cover Digital geometry Coffee bean segmentation 


  1. 1.
    Biswas, A., Bhowmick, P., Bhattacharya, B.B.: Construction of isothetic covers of a digital object: a combinatorial approach. J. Vis. Commun. Image Represent. 21(4), 295–310 (2010)CrossRefGoogle Scholar
  2. 2.
    Cates, J.E., Whitaker, R.T., Jones, G.M.: Case study: an evaluation of user-assisted hierarchical watershed segmentation. Med. Image Anal. 9, 566–578 (2005)CrossRefGoogle Scholar
  3. 3.
    Casasent, D., Talukdar, A., Cox, W., Chang, H., Weber, D.: Detection segmentation and pose estimation of multiple touching product inspection items. In Meye, G., DeShazer, J. (eds.) Optics in Agriculture, Forestry, and Biological Processing II, vol. 2907, pp. 205–216 (1996)Google Scholar
  4. 4.
    Charles, J.J., Kuncheva, L.I., Wells, B., Lim, I.S.: Object segmentation within microscope images of palynofacies. Comput. Geosci. 34, 688–698 (2008)CrossRefGoogle Scholar
  5. 5.
    Chen, Q., Yang, X., Petriuchen, E.M.: Watershed segmentation for binary images with different distance transforms. In proceedings HAVE, pp. 111–116 (2004)Google Scholar
  6. 6.
    Dougherty, E.R.: An Introduction to Morphological Image Processing. SPIE Optical Engineering Press, Washington (1992)Google Scholar
  7. 7.
    Iwanowski, M.: Morphological boundary pixel classification. In proceedings EUROCON, pp. 146–150 (2007)Google Scholar
  8. 8.
    Jung, C.R.: Unsupervised multiscale segmentation of color images. Pattern Recognit. Lett. 28, 523–533 (2007)CrossRefGoogle Scholar
  9. 9.
    Karantzalos, K., Argialas, D.: Improving edge detection and watershed segmentation with anisotropic diffusion and morphological levellings. Int. J. Remote Sens. 27(24), 5427–5434 (2006)CrossRefGoogle Scholar
  10. 10.
    Keagy, P.M., Parvin, B., Schatzki, T.F.: Machine recognition of navel worm damage in X-ray images of pistachio nuts. Lebensm-Wiss U Technol 29, 140–145 (1996)CrossRefGoogle Scholar
  11. 11.
    Klette, R., Rosenfeld, A.: Digital geometry: geometric methods for digital picture analysis. Morgan Kaufmann series in computer graphics and geometric modeling. Morgan Kaufmann, San Francisco (2004)Google Scholar
  12. 12.
    Leprettre, B., Martin, N.: Extraction of pertinent subsets from time–frequency representations for detection and recognition purposes. Signal Process. 82, 229–238 (2002)CrossRefMATHGoogle Scholar
  13. 13.
    Malcolm, A.A., Leong, H.Y., Spowage, A.C., Shacklock, A.P.: Image segmentation and analysis for porosity measurement. J. Mater. Process. Tech. 192–193, 391–396 (2007)CrossRefGoogle Scholar
  14. 14.
    Orbert, C.L., Bengtsson, E.W., Nordin, B.G.: Watershed segmentation of binary images using distance transformations. In: Proceedings of SPIE, vol. 1902, pp. 159–170 (1993)Google Scholar
  15. 15.
    Park, S.C., Lim, S.H., Sin, B.K., Lee, S.W.: Tracking non-rigid objects using probabilistic Hausdorff distance matching. Pattern Recognit. 38, 2373–2384 (2005)CrossRefGoogle Scholar
  16. 16.
    Razdan, A., Bae, M.S.: A hybrid approach to feature segmentation of triangle meshes. Comput. Aided Des. 35, 783–789 (2003)CrossRefGoogle Scholar
  17. 17.
    Sun, H.Q., Luo, Y.J.: Adaptive watershed segmentation of binary particle image. J. Microsc. 233(2), 326–330 (2009)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Talukder, A., Casasent, D., Lee, H., Keagy, P.M., Schatzki, T.F.: Modified binary watershed algorithm for segmentation of X-ray agricultural products. In Proceedings of SPIE, vol. 3543 (1998)Google Scholar
  19. 19.
    Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)CrossRefGoogle Scholar
  20. 20.
    Vincent, L.: Fast granulometric methods for the extraction of global image information. In proceedings of PRASA, pp. 119–140. Broederstroom, South Africa (2000)Google Scholar
  21. 21.
    Wang, D.: Unsupervised video segmentation based on watersheds and temporal tracking. IEEE Trans. Circ. Syst. Video Technol. 8(5), 539–546 (1998)CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Sahadev Bera
    • 1
  • Arindam Biswas
    • 2
  • Bhargab B. Bhattacharya
    • 1
  1. 1.Advanced Computing and Microelectronics UnitIndian Statistical InstituteKolkataIndia
  2. 2.Department of Information TechnologyBengal Engineering and Science UniversityShibpur, HowrahIndia

Personalised recommendations