Skip to main content

Synthesis and Synthetic Applications of Biologically Interesting Rhodanine and Rhodanine-Based Scaffolds

Abstract

Rhodanine and thiazolidinone (TZD) heterocycles are attractive targets in organic and medicinal chemistry owing to their potency in a wide spectrum of biological activities and can also serve as synthetic intermediates for many kinds of pharmaceuticals or drug precursors. Consequently, looking for efficient and concise green methods for the synthesis of these types of compounds is a major challenge in chemistry. As a result, many green methods have been used to synthesize structurally complex and diverse rhodanine and TZDs in recent years. The purpose of this chapter is to discuss the recent green synthesis of the rhodanine and TZD heterocyclic scaffolds including aqueous medium synthesis, ionic liquid, microwave, ultrasonic irradiation, solvent-free methods, solid catalysts, such as mesoporous, magnetic nanoparticles, etc.

Keywords

  • Rhodanine
  • Thiazolidinone (TZD)
  • 5-Oxo-2-thioxo-3-thiophene carboxylate
  • Heterocycles

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-81-322-1850-0_9
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-81-322-1850-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3

References

  1. Momosw Y, Maekawa T, Yamano T, Kawada M, Odaka H, Ikeda H, Sohda T (2002) Novel 5-substituted-2,4-thiazolidinedione and oxazolidinedione derivatives as insulin sensitizers with antidiabetic activity. J Med Chem 45:1518–1534

    CrossRef  Google Scholar 

  2. Unangst PC, Connor DT, Cetenko WA, Sorenson RJ, Sircar JC, Wright CD, Schrier DJ, Dyer RD (1993) Oxazole, thiazole, and imidazole derivatives of 2,6-di-tert-butylphenol as dual 5-lipoxygenase and cyclooxygenase inhibitors. Bioorg Med Chem Lett 3:1729–1734

    CrossRef  CAS  Google Scholar 

  3. Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86

    CrossRef  CAS  Google Scholar 

  4. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82

    CrossRef  CAS  Google Scholar 

  5. Kubota T, Koshizuka K, Williamson EA, Asou H, Said JW, Holden S, Miyoshi I, Koeffler HP (1998) Ligand for peroxisome proliferator-activated receptor γ (troglitazone) has potent antitumor effects against human prostate cancer both in vitro and in vivo. Cancer Res 58:3344–3352

    CAS  Google Scholar 

  6. Moretti RM, Marelli MM, Motta M, Limonta P (2001) Oncostatic activity of a thiazolidinedione derivative on human androgen-dependent prostate cancer cells. Int J Cancer 92:733–737

    CrossRef  CAS  Google Scholar 

  7. Verma A, Saraf SK (2008) 4-Thiazolidinone—a biologically active scaffold. Eur J Med Chem 43:897–905

    CrossRef  CAS  Google Scholar 

  8. McGuire WC, O’Neil RC, Brody G (1966) Anthelmintic activity of 3-methyl-5-[(p-nitrophenyl)azo]rhodanine. J Parasitol 52:528–537

    CrossRef  CAS  Google Scholar 

  9. Sing WT, Lee CL, Yeo SL, Lim SP, Sim MM (2001) Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorg Med Chem Lett 11:91–94

    CrossRef  CAS  Google Scholar 

  10. Grant EB, Guiadeen D, Baum EZ, Foleno BD, Jin H, Montenegro DA, Nelson EA, Bush K, Hlasta DJ (2000) The synthesis and SAR of rhodanines as novel class β-lactamase inhibitors. Bioorg Med Chem Lett 10:2179–2182

    CrossRef  CAS  Google Scholar 

  11. Orchard MG, Neuss JC, Galley CMS, Carr A, Porter DW, Smith P, Scopes DIC, Haydon D, Vousden K, Stubberfield CR, Young K, Page M (2004) Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein manosyl transferase 1 (PMT1). Bioorg Med Chem Lett 14:3975–3978

    CrossRef  CAS  Google Scholar 

  12. Cutshall NS, O’Day C, Prezhdo M (2005) Rhodanine derivatives as inhibitors of JSP-1. Bioorg Med Chem Lett 15:3374–3379

    CrossRef  CAS  Google Scholar 

  13. Allan V (1956) 2-Carboxymethylmercaptobenzimidazole and related compounds. J Org Chem 21:24–27

    CrossRef  Google Scholar 

  14. Gaber AM, El-Dean AM, Kamal AM, Atalla A (1993) Molecular Rearrangement of Sulfur Compounds (IV) Pyrolysis of 2-arylimino-3aryl5-benzylidenethiazolidin-4one. Phosphorus, Sulfur, Silicon, Relat Elem 80:101–108

    Google Scholar 

  15. Hanefeld W, Schlitzer M (1994) Oxidation of thiourethanes, XII: oxidative desulfuration of cyclic dithiocarbamates and carbazates using hydrogenperoxide or hydrogenperoxide/sodium tungstate in a two-phase-system. Arch Pharm 7:413–415

    CrossRef  Google Scholar 

  16. Fresneau P, Cussac M, Morand JM, Szymonski B, Tranqui D, Leclerc G (1998) Synthesis, activity, and molecular modeling of new 2,4-dioxo-5-(naphthylmethylene)-3-thiazolidineacetic acids and 2-thioxo analogues as potent aldose reductase inhibitors. J Med Chem 41:4706–4715

    CrossRef  CAS  Google Scholar 

  17. Holmberg B (1910) Estersäuren von Schwefelsubstituierter Kohlensäure mit aliphatischen Alkoholsäuren. Journal für Praktische Chemie 81(1):451–465

    Google Scholar 

  18. Sharma M, Chaturvedi V, Manju YK, Bhatnagar S, Srivastava K, Puri SK, Chauhan PMS (2009) Substituted quinolinylchalcones and quinolinylpyrimidines as a new class of anti-infective agents. Eur J Med Chem 44:2081–2091

    CrossRef  CAS  Google Scholar 

  19. Strube E (1959) N-(p-acetylaminophenyl)rhodanine. Organic Syntheses Coll 39:1

    Google Scholar 

  20. Gabillet S, Lecercle D, Loreau O, Carboni M, Dezard S, Gomis JM, Taran F (2007) Phosphine-catalyzed construction of sulfur heterocycles. Org Lett 9:3925–3927

    CrossRef  CAS  Google Scholar 

  21. Orazio AA, Lucia De Crescentini, Gianfranco F, Paolino F, Gianluca G, Fabio M, Giada M, Mohamed SB (2009) An efficient one-pot, three-component synthesis of 5-Hydrazinoalkylidene rhodanines from 1,2-diaza-1,3-dienes. Org Lett 11:2265–2268

    CrossRef  Google Scholar 

  22. Singh SJ, Chauhan SMS (2013) Potassium carbonate catalyzed one pot four-component synthesis of rhodanine derivatives. Tetrahedron Lett 54:2484–2488

    CrossRef  CAS  Google Scholar 

  23. Attanasi OA, Crescentini LD, Favi G, Filippone P, Giorgi G, Mantellini F, Moscatelli G, Barrett KE, Keely S (2000) Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. J Annu Rev Physiol 62:535

    CrossRef  Google Scholar 

  24. Field M (2003) Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest 111:931–943

    CrossRef  CAS  Google Scholar 

  25. Gabriel SE, Brigman KN, Koller BH, Boucher RC, Stutts MJ (1994) Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 266:107–109

    CrossRef  CAS  Google Scholar 

  26. Ma T, Thiagarajah JR, Yang H, Sonawane ND, Folli C, Galietta LJ, Verkman AS (2002) Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J Clin Invest 110:1651–1658

    CrossRef  CAS  Google Scholar 

  27. Sonawane ND, Muanprasat C, Nagatani R Jr, Song Y, Verkman AS (2005) In vivo pharmacology and antidiarrheal efficacy of a thiazolidinone CFTR inhibitor in rodents. J Pharm Sci 94:134–143

    CrossRef  CAS  Google Scholar 

  28. Factor P, Mutlu GM, Chen L, Mohameed J, Akhmedov AT, Meng FJ, Jilling T, Lewis ER, Johnson MD, Xu A, Kass D, Martino JM, Bellmeyer A, Albazi JS, Emala C, Lee HT, Dobbs LG, Matalon S (2007) Adenosine regulation of alveolar fluid clearance. Proc Natl Acad Sci U S A 104:4083–4088

    CrossRef  CAS  Google Scholar 

  29. Sonawane ND, Verkman AS (2008) Thiazolidinone CFTR inhibitors with improved water solubility identified by structure-activity analysis. Bioorg Med Chem 16:8187–8195

    CrossRef  CAS  Google Scholar 

  30. Chiyanzu I, Clarkson C, Smith PJ, Gut J, Rosenthal PJ, Chibale K (2005) Design, synthesis and anti-plasmodial evaluation in vitro of new 4-aminoquinoline isatin derivatives. Bioorg Med Chem 13:3249–3261

    CrossRef  CAS  Google Scholar 

  31. Gemma S, Camodeca C, Coccone SS, Joshi BP, Bernetti M, Moretti V, Brogi S, Marcos MCBD, Savini L, Taramelli D, Basilico N, Parapini S, Rottmann M, Brun R, Lamponi S, Caccia S, Guiso G, Summers RL, Martin RE, Saponara S, Gorelli B, Novellllino E, Campiani G, Butini S (2012) Optimization of 4-aminoquinoline/clotrimazole-based hybrid antimalarials: further structure-activity relationships, in vivo studies, and preliminary toxicity profiling. J Med Chem 55:6948–6967

    CrossRef  CAS  Google Scholar 

  32. Manohar S, Rajesh UC, Khan SI, Tekwani BL, Rawat DS (2012) Novel 4-aminoquinoline-pyrimidine based hybrids with improved in vitro and in vivo antimalarial activity. ACS Med Chem Lett 3:555–559

    CrossRef  CAS  Google Scholar 

  33. Solomon VR, Haq W, Srivastava K, Puri SK, Katti SB (2007) Synthesis and antimalarial activity of side chain modified 4-aminoquinoline derivatives. J Med Chem 50:394–398

    CrossRef  CAS  Google Scholar 

  34. Mahajan A, Kremer L, Louw S, Gueradel Y, Chibale K, Biot C (2011) Synthesis and in vitro antitubercular activity of ferrocene-based hydrazones. Bioorg Med Chem Lett 21:2866–2868

    CrossRef  CAS  Google Scholar 

  35. Guantai EM, Ncokazi K, Egan TJ, Gut J, Rosenthal PJ, Bhampidipati R, Kopinathan A, Smith PJ, Chibale K (2011) Enone- and chalcone-chloroquinoline hybrid analogues: in silico guided design, synthesis, antiplasmodial activity, in vitro metabolism, and mechanistic studies. J Med Chem 54:3637–3649

    CrossRef  CAS  Google Scholar 

  36. Starcevic K, Pesic D, Toplak A, Landek G, Alihodzic S, Herreros E, Ferrer S, Spaventi R, Peric M (2012) Novel hybrid molecules based on 15-membered azalide as potential antimalarial agents. Eur J Med Chem 49:365–378

    CrossRef  CAS  Google Scholar 

  37. Nitsche C, Klein CD (2012) Aqueous microwave-assisted one pot synthesis of N-substituted rhodanines. Tetrahedron Lett 53:5197–5201

    CrossRef  CAS  Google Scholar 

  38. Radi M, Botta L, Casaluce G, Bernardini M, Botta M (2010) Practical one-pot two-step protocol for the microwave-assisted synthesis of highly functionalized rhodanine derivatives. J Comb Chem 12:200–205

    CrossRef  CAS  Google Scholar 

  39. Yavari I, Hosseini N, Moradi L (2008) Efficient synthesis of highly functionalized thiazolidine- 4-ones under solvent-free conditions. Monatsh Chem 139:133–136; Yavari I, Hajinasiri R, Sayyed-Alangi Z, Iravani N (2008) Efficient synthesis of ethyl 3-alkyl-4-oxo- 2-thioxo-1,3-thiazolane-5-carboxylates from the reaction of carbon disulfide and primary amines in the presence of diethyl 2-chloromalonate. Monatsh Chem 139:1029–1031

    CrossRef  CAS  Google Scholar 

  40. Yavari I, Seyfi S, Hossaini Z, Sabbaghan M, Shirgahi-Talari F (2008) Efficient synthesis of 2-thioxo-1,3-thiazolanes from primary amines, CS2, and ethyl bromopyruvate. Monatsh Chem 139:1479–1482

    Google Scholar 

  41. Jacobine AM, Posner GH (2011) Three-component, one-flask synthesis of rhodanines (thiazolidinones). J Org Chem 2011 76:8121–8125

    CrossRef  CAS  Google Scholar 

  42. Gong K, He Z, Xu Y, Fang D, Liu Z (2008) Green synthesis of 5-benzylidene rhodanine derivatives catalyzed by 1-butyl-3-methyl imidazolium hydroxide in water. Monatsh Chem 139:913–915

    CrossRef  CAS  Google Scholar 

  43. Yavari I, Sanaeishoar T, Azad L, Ghazvini M (2011) Ketenimine N-functionalization of thiazolidine-2,4-diones with acetylenes and isocyanides. Mendeleev Commun 21:108–109

    CrossRef  CAS  Google Scholar 

  44. Alizadeh A, Rostamnia S, Zohreh N, Hosseinpour R (2009) A simple and effective approach to the synthesis of rhodanine derivatives via three-component reactions in water. Tetrahedron Lett 50:1533–1535

    CrossRef  CAS  Google Scholar 

  45. Mamaghani M, Loghmanifar A, Taati MR (2011) An efficient one-pot synthesis of new 2-imino-1,3-thiazolidin-4-ones under ultrasonic conditions. Ultrason Sonochem 18:45–48

    CrossRef  CAS  Google Scholar 

  46. Dundar OB, Evranos B, D-Evcimen N, Sarıkaya M, Ertan R (2008) Synthesis and aldose reductase inhibitory activity of some new chromonyl-2,4-thiazolidinediones. Eur J Med Chem 43:2412–2417

    CrossRef  Google Scholar 

  47. Karali N, Gursoy A, Kandemirli F, Shvets N, Kaynak F, Ozbey S, Kovalishyne V, Dimoglo A (2007) Synthesis and structure—antituberculosis activity relationship of 1H-indole-2,3-dione derivatives. Bioorg Med Chem 15:5888–5904

    CrossRef  CAS  Google Scholar 

  48. Attanasi OA, Crescentini LD, Favi G, Filippone P, Giorgi G, Mantellini F, Perrulli F, Spinelli D (2008) Simple construction of fused and spiro nitrogen/sulfur containing heterocycles by addition of thioamides or thioureas on cycloalkenyl-diazenes: examples of click chemistry. Tetrahedron 64:3837–3858

    CrossRef  CAS  Google Scholar 

  49. Madhavan GR, Chakrabarti R, Vikramadithyan RK, Mamidi RN, Balraju V, Rajesh BM, Misra P, Kumar SK, Lohray BB, Lohray VB, Rajagopalan R (2002) Synthesis and biological activity of novel pyrimidinone containing thiazolidinedione derivatives. Bioorg Med Chem 10:2671–2680

    CrossRef  CAS  Google Scholar 

  50. Gupta D, Ghosh NN, Chandra R (2005) Synthesis and pharmacological evaluation of substituted 5-[4-[2-(6,7-dimethyl-1,2,3,4-tetrahydro-2-oxo-4-quinoxalinyl)ethoxy]phenyl]methylene]thiazolidine-2,4-dione derivatives as potent euglycemic and hypolipidemic agents. Bioorg Med Chem Lett 15:1019–1022

    CrossRef  CAS  Google Scholar 

  51. Rostamnia S, Lamei K (2011) A rapid, catalyst-free, three-component synthesis of rhodanines in water using ultrasound. Synthesis 19:3080–3082

    CrossRef  Google Scholar 

  52. Rostamnia S, Karim Z, Ghavidel M (2012) Cetyltrimethylammonium bromide-surfactant aqueous micelles as a green and ultra-rapid reactor for synthesis of 5-oxo-2-thioxo-2,5-dihydro-3-thiophenecarboxylate derivatives. J Sulfur Chem 33:313–318

    CrossRef  CAS  Google Scholar 

  53. Rostamnia S, Doustkhah E, Nuri A (2013) Hexafluoroisopropanol dispersed into the nanoporous SBA-15 (HFIP/SBA-15) as a rapid, metal-free, highly reusable and suitable combined catalyst for domino cyclization process in chemoselective preparation of alkyl rhodanines. J Fluor Chem 153:1–6

    CrossRef  CAS  Google Scholar 

  54. Rostamnia S (2013) EtOAc-dispersed magnetic nanoparticles (DMNPs) of γ-Fe2O3 in the single-pot domino preparation of 5-oxo-2-thioxo-3-thiophenecarboxylate derivatives. C R Chimie 16:1042–1046.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Rostamnia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Rostamnia, S., Doustkhah, E. (2014). Synthesis and Synthetic Applications of Biologically Interesting Rhodanine and Rhodanine-Based Scaffolds. In: Ameta, K., Dandia, A. (eds) Green Chemistry: Synthesis of Bioactive Heterocycles. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1850-0_9

Download citation