A New Approach for Data Filtering in Wireless Sensor Networks

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 299)


Wireless Sensor Network has encouraged researchers to broaden up the field by critically evaluating and realizing its capabilities in various application areas. With every innovation there comes along lot of challenges. Conceiving an idea of implementing wireless sensor network has shown many challenges, i.e., node deployment, data clustering, data aggregation, energy efficiency, lifetime improvement, etc. In this paper, we have proposed a filtering scheme at the sensor/relay node which filters out the spurious and redundant data and is applicable both for critical as well as noncritical applications. The proposed approach shows promising results by filtering out useless data. This technique improves energy efficiency and network lifetime of the network.


Filtering Clustering Aggregation Network lifetime Energy consumed Delay 


  1. 1.
    Abdelgawad, A., Bayoumi, M.: Resource aware data fusion algorithms for wireless sensor networks. LNEE, vol. 118, pp. 17–34, Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Du, H., Hu, X., Jia, X.: Energy efficient routing and scheduling for real-time data aggregation in WSNs. J. Comput. Commun. 29, 3527–3535 (2006) (Elsevier)Google Scholar
  3. 3.
    Zhou, B., Ngoh, L., Lee, B., Fu, C.: HDA: a hierarchical data aggregation scheme for sensor networks. J. Comput. Commun. 29, 1292–1299 (2006) (Elsevier)Google Scholar
  4. 4.
    Luo, H., Luo J., Liu, Y., Das S.: Adaptive data fusion for energy efficient routing in wireless sensor networks. IEEE Trans. Comput. 55(10), 1286–1299 (2006)Google Scholar
  5. 5.
    Verdone, R., Dardari, D., Mazzini, G.: Signal processing and data fusion techniques for WSANs. Wirelss Sens. Actuators Netw. (2008)Google Scholar
  6. 6.
    Zhu, Y., Vedantham, R., Park, S., Sivakumar, R.: A scalable correlation aware aggregation strategy for wireless sensor networks. J. Inf. Fusion 9, 354–369 (2008) (Elsevier)Google Scholar
  7. 7.
    Hua, C., Yum, T.: Data aggregated maximum lifetime routing for wireless sensor networks. J. Ad Hoc Netw. 6, 380–392 (2008) (Elsevier)Google Scholar
  8. 8.
    Luo, H., Tao, H., Ma, H., Das, S.K.: Data fusion with desired reliability in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(3), 501–513 (2011)Google Scholar
  9. 9.
    Xu, M., Leung, H.: A joint fusion, power allocation and delay optimization approach for wireless sensor networks. IEEE Sens. J. 11(3), 737–744 (2011)Google Scholar
  10. 10.
    Renjith, P.N., Baburaj, E.: An analysis on data aggregation in wireless sensor networks. In: IEEE International Conference on Radar, Communication and Computing, pp. 62–71 (2012)Google Scholar
  11. 11.
    Zhang, H., Ma, H., Li, X.-Y., Tang, S.: In-network estimation with delay constraints in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 24(2), 368–380 (2013)Google Scholar
  12. 12.
    Ren, F., Zhang, J., He, T., Chen, C., Lin, C.: Attribute-aware data aggregation using potential-based dynamic routing in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 24 (5), 881–892 (2013)Google Scholar
  13. 13.
    Cheng, C.T., Leung, H., Maupin, P.: A delay-aware network structure for wireless sensor networks with in-network data fusion. IEEE Sens. J. 13(5), 1622–1631 (2013)Google Scholar
  14. 14.
    Lu, Z., Tan, S.-L., Biswas, J.: D2F: a routing protocol for distributed data fusion in wireless sensor networks. J. Wireless Pers. Commun. 70, 391–410 (2013) (Springer)Google Scholar
  15. 15.
    Lu, Z., Tan, S.-L., Biswas, J.: Fusion function placement for active networks paradigm in wireless sensor networks. J. Wireless Netw. 19(7), 1–12, 1525–1536 (2013) (Springer)Google Scholar
  16. 16.
    Khaleghi, B., Khamis, A., Karrey, F., Razavi, S.: Multisensor data fusion: a review of the state-of-art. J. Inf. Fusion 14, 28–44 (2013) (Elsevier)Google Scholar
  17. 17.
    Sharma, T.P., Joshi, R.C., Misra, M.: Data filtering and dynamic sensing for continuous monitoring in wireless sensor networks. Int. J. Auton. Adapt. Commun. Syst. (IJAACS) 3(3), 239–264 (2010) (Inderscience)Google Scholar
  18. 18.
    Gautam, N., Sofat, S., Vig, R.: Energy efficient voronoi ant system clustering algorithm for wireless sensor networks. In: EAI 5th International Conference on Adhoc Networks (ADHOCNETS 2013), Barcelona, Spain (2013)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.U. I. A. M. S. Panjab UniversityChandigarhIndia
  2. 2.PEC University of TechnologyChandigarhIndia
  3. 3.U. I. E. T. Panjab UniversityChandigarhIndia

Personalised recommendations