Advertisement

Fault Tolerant QoS Adaptive Clustering for Wireless Sensor Networks

  • T. Shiva Prakash
  • K. B. Raja
  • K. R. Venugopal
  • S. S. Iyengar
  • L. M. Patnaik
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 299)

Abstract

This paper proposes and analyzes an Energy Efficient Fault Tolerant QoS Adaptive Clustering Algorithm (FTQAC) for Wireless sensor networks suitable to support real-time traffic. The protocol achieves fault tolerance and energy efficiency through a dual cluster head mechanism and guarantees the desired QoS by including delay and bandwidth parameters in the route selection process. Simulation results indicate that FTQAC reduces overall energy consumption and improves network lifetime while maintaining required QoS.

Keywords

Clustering Energy efficiency Fault tolerance Packet delivery ratio (PDR) Quality of service (QoS) Wireless sensor networks 

References

  1. 1.
    Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, vol. 2. pp. 2–11 (2000)Google Scholar
  2. 2.
    Manjeshwar, A., Agrawal, D.P.: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In: Proceedings of 2nd International Workshop on Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing, pp. 195–202. Ft. Lauderdale (2002)Google Scholar
  3. 3.
    Loscri, V., Marano, S., Morabito, G.: A two-levels hierarchy for low-energy adaptative clustering hierarchy (TL-LEACH). In: Proceedings of VTC2005, pp. 1809–1813. Dallas, USA (2005)Google Scholar
  4. 4.
    Chen, W., Li, W., Shou, H., Yuan, B.: A QoS-based adaptive clustering algorithm for wireless sensor networks. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, pp. 1947–1952. Luoyang, China (2006)Google Scholar
  5. 5.
    Muruganathan, S.D., Ma, D.C.F., Bhasin, R.I., Fapojuwo, A.O.: A centralized energy-efficient routing protocol for wireless sensor networks. IEEE Commun. Mag. 43(3), S8–S13 (2005)CrossRefGoogle Scholar
  6. 6.
    Ji, P., Wu, C., Zhang, Y., Chen, F.: A low-energy adaptive clustering routing protocol of wireless sensor networks. In: Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), pp. 1–4 (2011)Google Scholar
  7. 7.
    EkbataniFard, G.H., Monsefi, R., Akbarzadeh-T, M.R., Yaghmaee, M.H.: A multi-objective genetic algorithm based approach for energy efficient QoS-routing in two-tiered wireless sensor networks. In: Proceedings of International Symposium on Wireless Pervasive Computing (ISWPC), pp. 80–85 (2010)Google Scholar
  8. 8.
    Aslam, N., Phillips, W., Safdar, G.A.: Worst case bounds of a cluster-based MAC protocol for wireless sensor networks. In: Proceedings of Wireless Telecommunications Symposium (WTS), pp. 1–6 (2012)Google Scholar
  9. 9.
    Shiva Prakash, T., Raja, K.B., Venugopal, K.R., Iyengar, S.S., Patnaik, L.M.: Traffic-differentiated two-hop routing for QoS in wireless sensor networks. In: IEEE Proceedings of the 5th International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Beijing, China, 10–13 Oct 2013Google Scholar
  10. 10.
    Fapojuwo, A.O., Cano-Tinoco, A.: Energy consumption and message delay analysis of QoS enhanced base station controlled dynamic clustering protocol for wireless sensor networks. IEEE Trans. Wireless Commun. 8(10), 5366–5374 (2009)CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • T. Shiva Prakash
    • 1
  • K. B. Raja
    • 1
  • K. R. Venugopal
    • 1
  • S. S. Iyengar
    • 2
  • L. M. Patnaik
    • 3
  1. 1.University Visvesvaraya College of EngineeringBangaloreIndia
  2. 2.Florida International UniversityMiamiUSA
  3. 3.Indian Institute of ScienceBangaloreIndia

Personalised recommendations