Re-Programmable Logic Array for Logic Design and Its Reliability Analysis in QCA

  • Kunal Das
  • Debashis De
  • Sayantan Ghatak
  • Mallika De
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 298)

Abstract

Quantum dot cellular automaton is now considered as a strong alternative of Complementary Metal Oxide Semiconductor (CMOS) technology. In this paper, we demonstrate an empirical work for implementing Quantum dot Cellular Automata (QCA) based Re-Programmable two variables Re-programmable logic array. It is fully reprogrammable by exploiting the fact of bidirectional nature of QCA. AND or OR logic. In our proposal, we made a different aspect of designing PLA. We made a control word, which must be for both the plane i.e. AND plane and OR plane. The OR plane or AND plane is configured with Majority voter and orthogonal fully populated tile. The PLA cell designed for two variables PLA, Reprogrammable by means of altering control Inputs. In our proposal we can program AND plane as well as OR plane with the control word. The reliability of this Re-PLA is reported.

Keywords

QCA tile Orthogonal fully populated tile MV Re-PLA Reliability 

Notes

Acknowledgments

The authors are grateful to the University Grants Commission (UGC), India File No.: 41-631/2012(SR), under which this paper has been completed.

References

  1. 1.
    Lent CS, Taugaw PD, Porod W, Bernstein GH (1993) Quantum dot cellular automata. Nanotechnology 4:49–57CrossRefGoogle Scholar
  2. 2.
    Lent CS, Tougaw PD, Porod W (1993) Bistable saturation in coupled quantum dots for quantum cellular automata. Appl Phys Lett 62:7–14CrossRefGoogle Scholar
  3. 3.
    Amlani I, Orlov A, Snider G, Lent C, Porod W, Bernstein G (1999) Experimental demonstration of electron switching in a quantum-dot cellular automaton (QCA) cell. Superlattices Microstruct 25(1–2):273–278CrossRefGoogle Scholar
  4. 4.
    Lent CS, Taugaw PD (1996) Dynamic behavior of quantum cellular automata. J Appl Phys 80(8):4722–4736CrossRefGoogle Scholar
  5. 5.
    Macucci M, Gattobigio M, Bonci L, Iannaccone G, Prins FE, Single C, Wetekam G, Kern DP (2003) A QCA cell in silicon on insulator technology: theory and experiment. Superlattices Microstruct 34:205–211CrossRefGoogle Scholar
  6. 6.
    Momenzadeh M, Huang J, Tahoori MB, Lombardi F (2005) Characterization, test, and logic synthesis of AND–OR-inverter (AOI) gate design for QCA implementation, IEEE Trans. Comput Aided Des Integr Circuits Syst 24:1881–1893CrossRefGoogle Scholar
  7. 7.
    Das K, De D (2009) A study on diverse nanostructure for implementing logic gate design for QCA. In: Proceedings of the international conference ICANN-2009, IIT Guwahati, Guwahati, AssamGoogle Scholar
  8. 8.
    Das K, De D (2009) A novel approach of AND–OR-inverter (AOI) gate design for QCA. In: Proceedings of IEEE conference CODEC-09, KolkataGoogle Scholar
  9. 9.
    Das K, De D (2011) Characterisation, applicability and defect analysis for tiles nanostructure of quantum dot cellular automata. Mol Simul 37(3):210–225CrossRefGoogle Scholar
  10. 10.
    Das K, De D (2010) QCA defect and fault analysis of diverse nanostructure for implementing logic gate. Int J Recent Trends Eng Finl 3(1):1–5Google Scholar
  11. 11.
    Momenzadeh M, Huang J, Lombardi F (2005) Defect and fault tolerance in VLSI systems DFT 2005. In: 20th IEEE international symposium, WashingtonGoogle Scholar
  12. 12.
    Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825CrossRefGoogle Scholar
  13. 13.
    Wang W, Walus K, Jullien GA (2003) Quantum-dot cellular automata adders. In: IEEE Nano2003 conference, San FranciscoGoogle Scholar
  14. 14.
    Jha N, Gupta S (2003) Testing of digital system. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. 15.
    Crocker M, Hu XS, Niemier M, Yan M, Bernstein G (2008) PLAs in quantum-dot cellular automata. IEEE Trans Nanotechnol 7(3):376–386CrossRefGoogle Scholar
  16. 16.
    Dysart TJ, Kogge PM (2008) Comparing the reliability of PLA and custom logic implementations of a QCA adder In: IEEE international workshop on design and test of nano devices, circuits and systems, pp 53–56Google Scholar
  17. 17.
    Crocker M, Hu XS, Niemier M (2007) Fault models and yield analysis for QCA-based PLAs. In: International conference on field programmable logic and applications, pp 435–440Google Scholar
  18. 18.
    Thoori M, Huang J, Momenzadeh M, Lombardi F (2004) Testing of quantum Cell automata. IEEE Trans Nanotechnol 3(4):432–442CrossRefGoogle Scholar
  19. 19.
    Walus K, Dysart TJ, Jullien GA, Budiman RA (2002) ATIPS laboratory QCA designer. ATIPS laboratory, University of Calgary, Canada. http://www.atips.ca/projects/qcadesigner
  20. 20.
    Tarjan RE (1972) Depth-first search and linear graph algorithms. SIAM J Comput 1(2):146–160Google Scholar
  21. 21.
    Fijany A, Toomarian BN (2001) New design for quantum dot cellular automata to obtain fault tolerant logic gates. J Nanopart Res 3:27–37CrossRefGoogle Scholar
  22. 22.
    Huang J, Momenzadeh M, Lombardi F (2007) On the tolerance to manufacturing defects in molecular QCA tiles for processing-by wire. J Electron Test Theory Appl 23(2):163–174CrossRefGoogle Scholar
  23. 23.
    Momenzadeh M, Ottavi M, Lombardi F (2005) Modeling QCA defects at molecular-level in combinational circuits. In: Proceedings of 20th IEEE international symposium on DFT, pp 208–216Google Scholar
  24. 24.
    Krishnaswamy S, Viamontes GF, Markov IL, Hayes JP (2008) Probabilistic transfer matrices in symbolic reliability analysis of logic circuits. ACM Trans Des Autom Electron Syst 13(1):8–35CrossRefGoogle Scholar
  25. 25.
    Han J, Taylor E, Gao J, Fortes J (2005) Reliability modeling of nanoeltronic circuits. In: Proceedings of 5th IEEE conference on nanotechnology, Nagoya, July 2005Google Scholar
  26. 26.
    Wang L, Jain F, Lombardi F (2011) Information-theoretic modeling and analysis of stochastic behaviors in quantum-dot cellular automata. Intech Open, Croatia, pp 1–22Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Kunal Das
    • 1
    • 4
  • Debashis De
    • 2
    • 3
  • Sayantan Ghatak
    • 2
  • Mallika De
    • 4
  1. 1.Department of Information TechnologyB.P. Poddar Institute of Management and TechnologyKolkataIndia
  2. 2.Department of Computer Science and EngineeringWest Bengal University of TechnologySalt Lake City, KolkataIndia
  3. 3.School of PhysicsUniversity of Western AustraliaPerthAustralia
  4. 4.Department of Engineering and Technological StudiesKalyani UniversityKalyaniIndia

Personalised recommendations