Advertisement

Bacterial Degradation of Some Organophosphate Compounds

  • Deepak Kumar MalikEmail author
  • Divya Bhatia
  • Meenu Rathi
Chapter

Abstract

Organophosphorus compounds cause high mammalian toxicity and therefore their detoxification from the environment is essential. Bioremediation can be an efficient and cheap option for decontamination of polluted ecosystems. Several bacterial species can degrade a wide range of organophosphorus compounds in liquid cultures and soil systems. Organophosphate hydrolase encoding opd gene has been isolated, sequenced, cloned in different organisms and altered for better activity and stability. Bacteria capable of complete mineralization have been constructed by transferring the complete degradation pathway for specific compounds in one bacterium.

Keywords

Chlorpyrifos Malathion Coumaphos Fenamiphos 

References

  1. Anonymous (2002) Chlorpyrifos Facts. USEPA 738-F-01–006.Google Scholar
  2. Araujo ASF, Monteiro RTR, Abarkeli RB (2003) Effect of glyphosate on the microbial activity of two Brazilian soils. Chemos 52:799–804CrossRefGoogle Scholar
  3. Balamurugan K, Ramakrishnan M, Senthilkumar1 R, Ignacimuthu S (2010) Biodegradation of methyl parathion and monocrotophos by Pseudomonas aeruginosa and Trichoderma viridae. Asian J Sci Technol 6:123–126Google Scholar
  4. Benning MM, Sims H, Raushel FM, Holden HM (2001) High resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta. Biochem 40:2712–2722CrossRefGoogle Scholar
  5. Beynon KI, Hutson DH, Wright AN (1973) The metabolism and degradation of vinyl phosphate insecticides. Residue Rev 47:55–142PubMedGoogle Scholar
  6. Bhadbhade BJ, Dhakephalkar PK, Sarnik SS, Kanekar PP (2002a) Plasmid-associated biodegradation of an organophosphorus pesticide, monocrotophos, by soil bacteria. J Appl Microbiol 93:224–234CrossRefGoogle Scholar
  7. Bhadbhade BJ, Sarnik SS, Kanekar PP (2002b) Biomineralization of an organophosphorus pesticide, monocrotophos, by soil bacteria. J Appl Microbiol 93:224–234CrossRefGoogle Scholar
  8. Bourquin AW (1977) Degradation of malathion by salt-marsh microorganisms. Appl Environ Microbiol 33:356–362PubMedCentralPubMedGoogle Scholar
  9. Chauhan A, Chakraborti AK, Jain RK (2000) Plasmid encoded degradation of p-nitrophenol and 4-nitrocatechol by Arthrobacter protophormiae. Biochem Biophys Res Commun 270:733–740PubMedCrossRefGoogle Scholar
  10. Cheng T-C, Harvey SP, Stroup AN (1993) Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl Environ Microbiol 59:3138–3140PubMedCentralPubMedGoogle Scholar
  11. Cho CM-H, Mulchandani A, Chen W (2002) Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Appl Environ Microbiol 68:2026–2030PubMedCentralPubMedCrossRefGoogle Scholar
  12. Chu YF, Hsu CH, Soma PK, Lo YM (2009) Immobilization of bioluminescent E. coli cells using natural and artificial fibers treated with polyethyleneimine. Bioresour Technol 100:3167–3174PubMedCrossRefGoogle Scholar
  13. DeFrank JJ, White WE (2002) Phosphofluoridates: biological activity and biodegradation. In: Neilson AH (ed) The handbook of environmental chemistry. Springer-Verlag, BerlinGoogle Scholar
  14. Deshpande NM, Dhakephalkar PK, Kanekar PP (2001) Plasmid-mediated dimethoate degradation in Pseudomonas aeruginosa MCMB-427. Lett Appl Microbiol 33:275–279PubMedCrossRefGoogle Scholar
  15. Dick RE, Quinn JP (1995) Glyphosate-degrading isolates from environmental samples: occurrence and pathway of degradation. Appl Microbiol Biotech 43:545–550CrossRefGoogle Scholar
  16. Ersilia A, Roxana M, Monica N, Renata N, Olimpia I (2010) Research on the weed control degree and glyphosate soil biodegradation an apple plantation (pioneer verity). Fascicula Biologie 17(1):5–8Google Scholar
  17. Fahd A, Ahmed AM (2009) Phytoremediation and detoxification of two organophosphorous pesticides residues in Riyadh area. World Appl Sci J 6(7):987–998Google Scholar
  18. Fu GP, Cui ZL, Huang TT, Li SP (2004) Expression, purification, and characterization of a novel methyl parathion hydrolase. Protein Expr Purif 36:170–176PubMedCrossRefGoogle Scholar
  19. Fulekar MH, Geetha M (2008) Bioremediation of chlorpyrifos by Pseudomonas aeruginosa using scale up technique. J Appl Biosci 12:657 -660Google Scholar
  20. Ghanem I, Orfi M, Shamma M (2007) Biodegradation of chloropyriphos by Klebsiella sp. isolated from an activated sludge sample of waste treatment plant in Damascus. Folia Microbiol 52:423–427CrossRefGoogle Scholar
  21. Goswami S, Singh DK (2009) Biodegradation of α- and β-endosulfan in broth medium and soil microcosm by bacterial strain Bordetella sp. B9. Biodegrad 20:199–207CrossRefGoogle Scholar
  22. Guha A, Kumari B, Roy MK (1997) Possible involvement of plasmid in degradation of malathion and chlorpyrifos by Micrococcus sp. Folia Microbiol 42:574–576CrossRefGoogle Scholar
  23. Hayatsu M, Hirano M, Tokuda S (2000) Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF1000. Appl Environ Microbiol 66:1737–1740PubMedCentralPubMedCrossRefGoogle Scholar
  24. Horne I, Harcourt RL, Sutherland TD, Russell RJ, Oakeshott JG (2002a) Isolation of a Pseudomonas monteilli strain with a novel phosphotriesterase. FEMS Microbiol Lett 206:51–55CrossRefGoogle Scholar
  25. Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG (2002b) Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol 68:3371–3376CrossRefGoogle Scholar
  26. Horne I, Sutherland TD, Oakeshott JG, Russell RJ (2002c) Cloning and expression of the phosphotriesterase gene hocA from Pseudomonas monteilli C11. Microbiol 148:2687–2695Google Scholar
  27. Hua F, Yunlong Y, Xiaoqiang C, Xiaoe Y, Jingquan Y (2009) Degradation of chlorpyrifos in laboratory soil and its impact on soil microbial functional diversity. J Environ Sci 21(3):380–386CrossRefGoogle Scholar
  28. Imran H, Altaf KM, Kim JG (2004) Malathion degradation by Pseudomonas using activated sludge treatment system (biostimulator). Biotechnol 3:82–89CrossRefGoogle Scholar
  29. Iranzo M, Sain-Pardo I, Boluda R, Sanchez J, Mormeneo S (2001) The use of microorganisms in environmental remediation. Annals Microbiol 51:135–143Google Scholar
  30. Jia KZ, Li XH, He J, Gu LF, Ma JP, Li SP (2007) Isolation of a monocrotophos degrading bacterial strain and characterization of enzymatic degradation. Huan Jing Ke Xue 28(4):908–912PubMedGoogle Scholar
  31. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating ‘‘uncultivable’’ microorganisms in pure culture in a simulated natural environment. Sci 296:1127–1129CrossRefGoogle Scholar
  32. Karpouzas DG, Morgan JAW, Walker A (2000) Isolation and characterization of ethoprophos-degrading bacteria. FEMS Microbiol Ecol 33:209–218PubMedCrossRefGoogle Scholar
  33. Karpouzas D, Fotopoulou A, Menkissoglu-Spiroudi U, Singh BK (2005) Non-specific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos by two bacterial isolates. FEMS Microbiol Ecol 53:369–378PubMedCrossRefGoogle Scholar
  34. Kertesz MA, Cook AM, Leisinger T (1994a) Microbial metabolism of sulfur and phosphorus-containing xenobiotics. FEMS Microbiol Rev 15:195–215CrossRefGoogle Scholar
  35. Kononova SV, Nesmeyanova MA (2002) Phosphonates and their degradation by microorganisms. Biochem (Moscow) 67:184–195CrossRefGoogle Scholar
  36. La Nauze JM, Rosenberg H, Shaw DC (1970) The enzymatic cleavage of the carbon-phosphorus bond: purification and properties of phosphonatase. Biochim Biophys Acta 121:332–350CrossRefGoogle Scholar
  37. Lakshmi CV, Kumar M, Khanna S (2009) Biodegradation of chlorpyrifos in soil by enriched cultures. Curr Microbiol 58:35–38PubMedCrossRefGoogle Scholar
  38. Lerbs W, Stock M, Parthier B (1990) Physiological aspects of glyphosate degradation in Alcaligenes sp. strain GL. Arch Microbiol 153:146–150CrossRefGoogle Scholar
  39. Leticia P, Pilar CMD, John S (2008) Degradation of Glyphosate and other pesticides by ligninolytic enzymes. Biodegrad 2:195–199Google Scholar
  40. Leticia P, Marıa delPC, John S (2009) Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegrad 20:751–759CrossRefGoogle Scholar
  41. Lu X, Zhao BZ, Zhang JB, Deng JC, Li P, Xin XL (2005) Property and environmental behavior of herbicide glyphosate. Chin J Soil Sci 5:785–790Google Scholar
  42. Manassero A, Passalia C, Negro AC, Cassano AE, Zalazar CS (2010) Glyphosate degradation in water employing the H2O2/UVC process. Water Res 13:3875–3882CrossRefGoogle Scholar
  43. Manavathi B, Pakala SB, Gorla P, Merrick M, Siddavattam D (2005) Influence of zinc and cobalt on expression and activity of parathion hydrolase from Flavobacterium sp. ATCC27551. Pestic Biochem Physiol 83:37–45CrossRefGoogle Scholar
  44. Moneke AN, Okpala GN, Anyanwu CU (2010) Biodegradation of glyphosate herbicide in vitro using bacterial isolates from four rice fields. Afr J Biotechnol 9(26):4067–4074Google Scholar
  45. Muck W (1994) Metabolism of monocrotophos in animals. Rev Environ Contam Toxicol 139:59–65Google Scholar
  46. Mulbry WW (1992) The aryldialkylphosphatase-encoding gene adpB from Nocardia sp. strain B-1: cloning, sequencing and expression in Escherichia coli. Gene 121:149–153PubMedCrossRefGoogle Scholar
  47. Mulbry WW (2000) Characterization of a novel organophosphorus hydrolase from Nocardiodes simplex NRRL B-24074. Microbiol Res 154:285–288PubMedCrossRefGoogle Scholar
  48. Nourouzi MM, Chuah TG, Choong TS, Rabiei F (2012) Modeling biodegradation and kinetics of glyphosate by artificial neural network. J Environ Sci Health B 3(5):455–465CrossRefGoogle Scholar
  49. Obojska A, Lejczak B (2003) Utilization of structurally diverse organophosphonates by Streptomyces. Appl Microbiol Biotechnol 62:557–563PubMedCrossRefGoogle Scholar
  50. Obojska A, Ternana NG, Lejczak B, Kafarski P, McMullan P (2002) Organophosphate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol 68:2081–2084PubMedCentralPubMedCrossRefGoogle Scholar
  51. Borggaard OK (2011) Does phosphate affects soil sorption and degradation of glyphosate—a review. Trends Soil Sci Plant Nutri 2(1):50–64Google Scholar
  52. Olvera-Velona A, Benoit P, Barriuso E, Ortiz-Hernandez L (2008) Sorption and desorption of organophosphate pesticides, parathion and cadusafos, on tropical agricultural soils. Agron Sustain Dev 28:231–238Google Scholar
  53. Peng X, Misawa N, Harayama S (2003) Isolation and characterization of thermophilic Bacilli degrading cinnamic, 4-coumaric and ferulic acids. Appl Environ Microbiol 69:1417–1427PubMedCentralPubMedCrossRefGoogle Scholar
  54. Qureshi AA, Purohit HJ (2002) Isolation of bacterial consortia for degradation of p-nitrophenol from agricultural soil. Annals Appl Biol 140:159–162CrossRefGoogle Scholar
  55. Racke KD, Coats JR, Titus KR (1988) Degradation of chlorpyrifos and its hydrolysis products, 3,5,6-trichloro-2- pyridinol, in soil. J Environ Sci Health B 23:527–539CrossRefGoogle Scholar
  56. Racke KD, Laskowski DA, Schultz MR (1990) Resistance of chlorpyrifos to enhanced biodegradation in soil. J Agric Food Chem 38:1430–1436CrossRefGoogle Scholar
  57. Racke KD, Steele KP, Yoder RN, Dick WA, Avidov E (1996) Factors effecting the hydrolytic degradation of chlorpyrifos in soil. J Agric Food Chem 44:1582–1592CrossRefGoogle Scholar
  58. Rangaswamy V, Venkateswaralu K (1992) Degradation of selected insecticides by bacteria isolated from soil. Bull Environ Contam Toxicol 49:797–804PubMedCrossRefGoogle Scholar
  59. Rani NL, Lalitha-kumari D (1994) Degradation of methyl parathion by Pseudomonas putida. Can J Microbiol 4:1000–1004CrossRefGoogle Scholar
  60. Roberts SJ, Walker A, Parekh NR, Welsh SJ, Waddington MJ (1993) Studies on a mixed bacterial culture from soil which degrades the herbicide linuron. Pestic Sci 39:71–78CrossRefGoogle Scholar
  61. Rosenberg A, Alexander M (1979) Microbial cleavage of various organophosphorus insecticides. Appl Environ Microbiol 37:886–891PubMedCentralPubMedGoogle Scholar
  62. Savitha K, Saraswathi Raman DN (2012) Isolation, identification, resistance profile and growth kinetics of chlorpyrifos resistant bacteria from agricultural soil of Bangalore. Res Biotechnol 3(2):08–13Google Scholar
  63. Sayed KG, Iman EE, Taha AK, Walaa El-S, Mervat EM (2010) Screening for and isolation and identification of malathion-degrading bacteria: cloning and sequencing a gene that potentially encodes the malathion-degrading enzyme, carboxylestrase in soil bacteria. Biodegrad 21:903–913CrossRefGoogle Scholar
  64. Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1982) Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 44:246–249PubMedCentralPubMedGoogle Scholar
  65. Sharmila M, Ramanand K, Sethunathan N (1989) Effect of yeast extract on the degradation of organophosphorus insecticides by soil enrichment and bacterial cultures. Can J Microbiol 35:1105–1110CrossRefGoogle Scholar
  66. Shelton DR (1988) Mineralization of diethylthiophosphoric acids by an enriched consortium from cattle dip. Appl Environ Microbiol 54:2572–2573PubMedCentralPubMedGoogle Scholar
  67. Shelton DR, Somich CJ (1988) Isolation and characterization of coumaphos-metabolising bacteria from cattle dip. Appl Environ Microbiol 54:2566–2571PubMedCentralPubMedGoogle Scholar
  68. Singh BK (2009) Organophosphorus-degrading bacteria:ecology and industrial applications. Nat Rev Microbiol 7:156–164PubMedCrossRefGoogle Scholar
  69. Singh AK, Seth PK (1989) Degradation of malathion by microorganisms isolated from industrial effluents. Bull Environ Contam Toxicol 43:28–35PubMedCrossRefGoogle Scholar
  70. Singh S, Singh DK (2003) Utilization of monocrotophos as phosphorus source by Pseudomonas aeruginosa F10B and Clavibacter michiganense subsp. insidiosum SBL 11. Can J Microbiol 49:101–109PubMedCrossRefGoogle Scholar
  71. Singh BK, Kuhad RC, Singh A, Lal R, Triapthi KK (1999) Biochemical and molecular basis of pesticide degradation by microorganisms. Crit Rev Biotechnol 19:197–225PubMedCrossRefGoogle Scholar
  72. Singh BK, Kuhad RC, Singh A, Tripathi KK, Ghosh PK (2000) Microbial degradation of the pesticide lindane. Adv Appl Microbiol 47:269–298PubMedCrossRefGoogle Scholar
  73. Singh BK, Walker A, Morgan JAW, Wright DJ (2003) Effect of soil pH on the biodegradation of chlorpyrifos and isolation of chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69:5198–5206PubMedCentralPubMedCrossRefGoogle Scholar
  74. Singh BK, Walker A, Morgan JAW, Wright DJ (2004) Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in the bioremediation of contaminated soils. Appl Environ Microbiol 70:4855–4863PubMedCentralPubMedCrossRefGoogle Scholar
  75. Singh DP, Khattar JI, Nadda J, Singh Y, Garg A, Kaur N, Gulati A (2011) Chlorpyrifos degradation by the cyanobacterium Synechocystis sp. strain PUPCCC 64. Environ Sci Pollut Res Int 18(8):1351–1359PubMedCrossRefGoogle Scholar
  76. Singh B, Kaur J, Singh K (2012) Biodegradation of malathion by Brevibacillus sp. strain KB2 and Bacillus cereus strain PU. World J Microbiol Biotechnol 28(3):1133–1141PubMedCrossRefGoogle Scholar
  77. Sogorb MA, Vilanova E, Carrera V (2004) Future application of phosphotriesterases in the prophylaxis and treatment of organophosphorus insecticide and nerve agent poisoning. Toxicol Lett 151:219–233PubMedCrossRefGoogle Scholar
  78. Spain JC, Gibson DT (1991) Pathway for biodegradation of p-nitrophenol in a Moraxella species. Appl Environ Microbiol 57:812–819PubMedCentralPubMedGoogle Scholar
  79. Strong LC, Rosendahl C, Johnson G, Sadowsky MJ, Wackett LP (2002) Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Appl Environ Microbiol 68:5973–5980PubMedCentralPubMedCrossRefGoogle Scholar
  80. Suresh BP, Purushotham G, Aleem BP, Ravi Kumar K, Rajasekhar B, Mahesh A, Mike M, Dayananda S (2007) Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a gram-negative Serratia sp. strain DS001. Appl Microbiol Biotechnol 73:1452–1462CrossRefGoogle Scholar
  81. Tchelet R, Levanon D, Mingelrin D, Henis Y (1993) Parathion degradation by a Pseudomonas sp. and a Xanthomonas sp. and by their crude enzyme extracts as affected by some cations. Soil Biol Biochem 25:1665–1671CrossRefGoogle Scholar
  82. Tejomyee SB, Pravin RP (2009) Microbial degradation monocrotophos by Aspergillus oryzae. Int Biodeter Biodegr 63(4):503–508CrossRefGoogle Scholar
  83. Ternana NG, McMullan G (2000) The utilization of 4- aminobutylphosphonate as sole nitrogen source by a strain of Kluyveromyces fragilis. FEMS Microbiol Lett 184:237–240CrossRefGoogle Scholar
  84. Trabue SL, Ogram AV, Ou L-T (2001) Dynamics of carbofuran degrading microbial communities in soil during three successive annual applications of carbofuran. Soil Biol Biochem 33:75–81CrossRefGoogle Scholar
  85. Tse H, Comba M, Alaee M (2004) Methods for the determination of organophosphate insecticides in water, sediments and biota. Chemos 54:41–47CrossRefGoogle Scholar
  86. Vyas NK, Nickitenko A, Rastogi VK, Shah SS, Quiocho FA (2010) Structural insights into the dual activities of the nerve agent degrading organophosphate anhydrolase/prolidase. Biochem 49:547–559CrossRefGoogle Scholar
  87. Xie S, Liu J, Li L, Qiao C (2009) Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. J Environ Sci 21(1):76–82CrossRefGoogle Scholar
  88. Xuan X, Fangying J, Zihong F, Li H (2011) Degradation of glyphosate in soil photocatalyzed by Fe3O4/SiO2/TiO2 under solar light. Int J Environ Res Public Health 8:1258–1270Google Scholar
  89. Yali C, Xianen Z, Hong L, Yinshan W, Xiangming X (2002) Study on Pseudomonas sp. WBC-3 capable of complete degradation of methyl parathion. Weishengwu Xuebao 42:490–497Google Scholar
  90. Yang C, Cai N, Dong M, Jiang H, Li J, Qiao C, Mulchandani A, Chen W (2008) Surface display of MPH on Pseudomonas putida JS 4444 using ice nucleation protein and its application in detoxification of organophosphate. Biotechnol Bioeng 99:30–37PubMedCrossRefGoogle Scholar
  91. Yang C, Freudl R, Qiao C (2009) Export of methyl parathion hydrolase to the periplasm by the twin-arginine translocation pathway in Escherichia coli. J Agric Food Chem 57:8901–8905PubMedCrossRefGoogle Scholar
  92. Yang J, Liu R, Hong J, Yang Y, Qiao C (2011) Selection of a whole-cell biocatalyst for methyl parathion biodegradation. Appl Microbiol Biotechnol 10:3792–3801Google Scholar
  93. Zeinat KM, Nashwa AH, Fetyan A, Mohamed AI, Sherif El-N (2008) Biodegradation and detoxification of malathion by of Bacillus thuringiensis MOS-5. Aust J Basic Appl Sc 2(3):724–732Google Scholar
  94. Zhang RF, Cui ZL, Zhang XZ, Jiang JD, Gu JD, Li SP (2006) Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegrad 17:465–472CrossRefGoogle Scholar
  95. Zhongli C, Shunpeng L, Guoping F (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922–4925PubMedCentralPubMedCrossRefGoogle Scholar
  96. Zhongli C, Ruifu Z, Jian H, Shunpeng L (2002) Isolation and characterization of a p-nitrophenol degradation Pseudomonas sp. strain p3 and construction of a genetically engineered bacterium. Weishengwu Xuebao 42:19–26Google Scholar
  97. Zhu J, Zhao Y, Qiu J (2010) Isolation and application of a chlorpyrifos-degrading Bacillus licheniformis ZHU-1. Afr J Microbiol Res 4:2410–2413Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of Biotechnology, University Institute of Engineering & TechnologyKurukshetra UniversityKurukshetraIndia
  2. 2.Department of Botany, University CollegeKurukshetra UniversityKurukshetraIndia

Personalised recommendations