Isolation, Characterization and Production of Bacterial Laccase from Bacillus sp.

  • Deepti Singh
  • Ekta Narang
  • Preeti Chutani
  • Amit Kumar
  • K.K. SharmaEmail author
  • Mahesh Dhar
  • Jugsharan S. Virdi


Two species of Bacillus exhibiting laccase activity were screened from earthworm cast and soil samples. The M162 medium with 5 mM guaiacol was used for isolating bacterial strains capable of oxidizing guaiacol. One species was identified as Bacillus pumilus and the other as Bacillus licheniformis based on the result of biochemical tests and 16S rDNA analysis. B. pumilus and B. licheniformis could grow at temperature ranging from 30–55 °C and showed optimum growth at temperature 37 °C and pH 8.0 and 5.0. Laccase activity was maximum at 37 °C and pH 7.0. They were found positive for different hydrolytic enzymes. The dyes toluidine blue O and rose bengal were degraded within 24 h.


Bacillus pumilus  · Bacillus licheniformis Bacterial laccase Hydrolytic enzymes 



The financial support from University Grants Commission, Government of India is highly acknowledged.


  1. Alexandre G, Zhulin LB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42PubMedCrossRefGoogle Scholar
  2. Bains J, Capalash N, Sharma P (2003) Laccase from a non-melanogenic, alkalotolerant γ-proteobacterium JB isolated from industrial wastewater drained soil. Biotechnol Lett 25:1155–1159PubMedCrossRefGoogle Scholar
  3. Cho E-A, Seo J, Lee D-W, Pan J-G (2011) Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Enzyme Micro Technol 49:100–104CrossRefGoogle Scholar
  4. Couto SR, Herrera JLT (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513CrossRefGoogle Scholar
  5. Daniel D, Rakhi BS, Subramaniyan S, Sandhia GS (2013). Optimisation of Cultural and Nutritional Parameters for the Production of Protease from Newly Isolated Bacterial Strain Bacillus SDR 10. In: Sabu A, Augustine A (ed). Prospects in Bioscience: Addressing the Issues, Springer, India, pp 63–77Google Scholar
  6. D’Annibale A, Stazi SR, Vinciguerra V, Sermanni GG (2000) Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater. J Biotechnol 77:265–273PubMedCrossRefGoogle Scholar
  7. Degryse E, Glansdorff N, Pierard A (1978) A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch Microbiol 117:189–196PubMedCrossRefGoogle Scholar
  8. Desai SS, Nityanand C (2011) Microbial laccases and their applications: a review. Asian J Biotechnol 3(2):98–124CrossRefGoogle Scholar
  9. Dittmer NT, Suderman RJ, Jiang H, Zhu YC, Gorman MJ, Kramer KJ, Kanost MR (2004) Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 34:29–41PubMedCrossRefGoogle Scholar
  10. Eggert C, Temp U, Dean JFD, Eriksson KEL (1996) A fungal metabolite mediates degradation of non-lignin structures and synthetic lignin. FEBS Lett 391:144–148PubMedCrossRefGoogle Scholar
  11. Endo K, Hayashi Y, Hibi T, Hosono K, Beppu T, Ueda K (2003) Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J Biochem 133:671–677PubMedCrossRefGoogle Scholar
  12. Givaudan A, Effosse A, Faure D, Potier P, Bouillant ML, Bally R (1993) Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in nonmotile strains of Azospirillum lipoferum. FEMS Microbiol Lett 108:205–210CrossRefGoogle Scholar
  13. Gregory RP, Bendall DS (1966) The purification and some properties of the polyphenol oxidase from tea ( Camella sinesis L.). Biochem J 101:569–581PubMedCentralPubMedGoogle Scholar
  14. Hattori M, Tsuchihara K, Noda H, Konishi H, Tamura Y, Shinoda T, Nakamura M, Hasegawa T (2010) Molecular characterization and expression of laccase genes in the salivary glands of the green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae). Insect Biochem Mol Biol 40:331–338PubMedCrossRefGoogle Scholar
  15. Heinzkill M, Messner K (1997) The ligninolytic system of fungi. In: Anke T (ed) Fungal biotechnology. Chapman & Hall, Weinheim, pp 213–226Google Scholar
  16. Held C, Kandelbauer A, Schroeder M, Cavaco-Paulo A, Guebitz GM (2005) Biotransformation of phenolics with laccase containing bacterial spores. Environ Chem Lett 3:74–77CrossRefGoogle Scholar
  17. Hüttermann A, Mai C, Kharazipour A (2001) Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol 55:387–394PubMedCrossRefGoogle Scholar
  18. Jacobson ES, Emery HS (1991) Temperature regulation of the cryptococcal phenoloxidase. J Med Vet Mycol 29:121–124PubMedCrossRefGoogle Scholar
  19. Jurado M, Prieto A, Martínez-Alcalá MA et al (2009) Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresource Technol 100:6378–6384CrossRefGoogle Scholar
  20. Koschorreck K, Richter SM, Ene AB, Roduner E, Schmid RD, Urlacher VB (2008) Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microbiol Biotechnol 79:217–224PubMedCrossRefGoogle Scholar
  21. Kuznetsov VD, Filippova SN, Rybakova AM (1984) Nature of the brown pigment and the composition of the phenol oxidases of Streptomyces galbus. Microbiol 53:193–197Google Scholar
  22. Lu L, Zhao M, Wang T-N, Zhao L-Y, Du M-H, Li T-L, Li D-B (2011) Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04. Bioresour Technol doi:10.1016/j.biortech.2011.07.111Google Scholar
  23. Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277:18849–18859PubMedCrossRefGoogle Scholar
  24. Mayer A, Staples R (2002) Laccase: new functions for an old enzyme. Phytochem 60:551–565CrossRefGoogle Scholar
  25. Mittal A, Nagar S, Kumar Gupta VK (2013). Production and purification of high levels of cellulase-free bacterial xylanase by Bacillus sp. SV-34S using agro-residue. Annals of Microbiology 63(3):1157–1167Google Scholar
  26. Nosanchuk JD, Valadon P, Feldmesser M, Casadevall A (1999) Melanization of Cryptococcus neoformans in murine infection. Mol Cell Biol 19:745–750PubMedCentralPubMedGoogle Scholar
  27. Nurudeen TA, Ahearn DG (1979) Regulation of melanin production by Cryptococcus neoformans. J Clin Microbiol 10:724–729PubMedCentralPubMedGoogle Scholar
  28. Patel H, Gupte A, Gupte S (2009). Effect of different culture conditions and inducers on production of laccase by a basidiomycete fungal isolate Pleurotus ostreatus HP-1 under solid state fermentation. BioResources 4(1):268–284 Google Scholar
  29. Polacheck I, Hearing VJ, Kwon-Chung KJ (1982) Biochemical studies of phenoloxidase and utilization of catecholamines in Cryptococcus neoformans. J Bacteriol 150:1212–1220PubMedCentralPubMedGoogle Scholar
  30. Reiss R, Ihssen J, T-M L (2011) Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum. BMC Biotechnol 11:9PubMedCentralPubMedCrossRefGoogle Scholar
  31. Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (2002) Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Natl Acad Sci U S A 99:2766–2771PubMedCentralPubMedCrossRefGoogle Scholar
  32. Ruijssenaars HJ, Hartmans S (2004) A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Appl Microbiol Biotechnol 65:177–182PubMedGoogle Scholar
  33. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  34. Saparrat MCN, Cabello MN, Arambarri AM (2002a) Extracellular laccase activity in Tetraploa aristata. Biotechnol Lett 24:1375–1377CrossRefGoogle Scholar
  35. Sato Y, Bao W, Sederoff R, Whetten R (2001) Molecular cloning and expression of eight laccase cDNAs in loblolly pine ( Pinus taeda). J Plant Res 114:147–155CrossRefGoogle Scholar
  36. Sharma KK, Kuhad RC (2008) Laccase: enzyme revisited and function re defined. Ind J Microbiol 48:309–316CrossRefGoogle Scholar
  37. Sharma P, Goel R, Capalash N (2007) Bacterial laccases. World J Microbiol Biotechnol 23:823–832CrossRefGoogle Scholar
  38. Sharma R, Goel R, Capalash N (2007) Bacterial laccases. World J Microbiol Biotechnol 23:823–832CrossRefGoogle Scholar
  39. Singh G, Capalash N, Goel R, Sharma P (2007) A pH-stable laccase from alkalitolerant γ-proteobacterium JB: purification, characterization and indigo carmine degradation. Enzyme Microb Technol 41:794–799CrossRefGoogle Scholar
  40. Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605PubMedCrossRefGoogle Scholar
  41. Suzuki K, Hirai H, Murata H, Nishida T (2003) Removal of estrogenic activities of 17 β-estradiol and ethynylestradiol by ligninolytic enzymes from white rot fungi. Water Res 37(8):1972–1975PubMedCrossRefGoogle Scholar
  42. Thurston CF (1994) The structure and function of fungal laccases. Microbiol 140:19–26CrossRefGoogle Scholar
  43. Ullah MA, Bedford CT, Evans CS (2000) Reactions of pentachlorophenol with laccase from Coriolus versicolor. Appl Microbiol Biotechnol 53:230–234PubMedCrossRefGoogle Scholar
  44. Wang C, Zhao M, Li D-B, Cui D-Z, Lu L, Wei X (2010) Isolation and characterization of a novel Bacillus subtilis WD23 exhibiting laccase activity from forest soil. Afr J Biotechnol 9(34):5496–5502Google Scholar
  45. Wang F, Guo C, Wei T, Zhang T, Liu CZ (2012). Heat shock treatment improves Trametes versicolor laccase production. Appl Biochem Biotechnol 168(2):256–265 Google Scholar
  46. Williamson PR (1994) Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J Bacteriol 176:656–664PubMedCentralPubMedGoogle Scholar
  47. Yesilada O, Sik S, Sam M (1997). Biodegradation of olive oil mill wastewater by Coriolus versicolor and Funalia trogii:effects of agitation, initial COD concentration, inoculum size and immobilization. World J Microbiol Biotechnol 14(1):37–42Google Scholar
  48. Yoshida H (1883) Chemistry of Lacquer (Urushi) part 1. J Chem Soc 43:472–486CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Deepti Singh
    • 1
  • Ekta Narang
    • 1
  • Preeti Chutani
    • 1
  • Amit Kumar
    • 1
  • K.K. Sharma
    • 1
    Email author
  • Mahesh Dhar
    • 2
  • Jugsharan S. Virdi
    • 2
  1. 1.Department of MicrobiologyMaharshi Dayanand UniversityRohtakIndia
  2. 2.Department of MicrobiologyUniversity of DelhiNew DelhiIndia

Personalised recommendations