Skip to main content

Sustainable Agriculture and Plant Growth Promoting Rhizobacteria

  • Chapter
  • First Online:
  • 3140 Accesses

Abstract

Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria that colonize the roots of the plant and promote the plants in terms of their growth. Biomass of the crops is enhanced if the PGPR are supplied to the crop plants at a very early stage of their growth. Inoculation of crops with PGPR may result in multiple effects such as seedling germination, plant height, root and shoot fresh and dry weight, nutrient content and increased nodulation in soybean crop. They help in increasing nitrogen fixation in soybean crop and also help in promoting free-living nitrogen-fixing bacteria; increase supply of other nutrients such as phosphorus and produce plant hormones. They control fungal and bacterial diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2009a) effect of insecticide- tolerant and plant growth -promoting Mesorhizobium on the performance of chickpea growth in insecticide stressed alluvial soils. J Crop Sci Biotechnol 12:213–222

    Google Scholar 

  • Ahemad M, Khan MS (2010a) Ameliorative effects of Mesorhizobium sp. MRC4 on chickpea yield and yield components under different doses of herbicide stress. Pestic Biochem Physiol 98:183–190

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2010b) Comparative toxicity of selected insecticides to pea plants and growth promotion in response to insecticide- tolerant and plant growth promoting rhizobium leguminosarum. Crop Prot 29:325–329

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2010c) Growth promotion and protection of lintil (Lens esculenta) against herbicide stress by rhizobium species. Ann Microbiol 60:735–745

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2010d) Phosphate solubilizing and plant growth promting Pseudomonas aeruginosa PS1 improves greengram performance in quizalafop-p-ethyl and clodinafop amended soil. Arch Environ Contam Toxicol 58:361–372

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2010e) Plant growth promoting activities of phosphate-solubilizing Enterobacterasburiae as influenced by fungicides. Eur Ashian J Biosci 4:88–95

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    CAS  PubMed  Google Scholar 

  • Alagawadi AR, Gaur AC (1988) Associative effect of rhizobium and phosphate-solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil 105:241–246

    Google Scholar 

  • Antoun H, Prevost D (2005) Ecology of plant growth promoting Rhizobacteria. Chapter 1. In: Siddiqui ZA (ed) PGPR: Biocontrol and Biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque MA, Islam MZ, Shahidullah SM, Meon S (2009) Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8(7):1247–1252

    CAS  Google Scholar 

  • Aziz ZFA, Saud HM, Rahim KA, Ahmed OH (2012) Variable responses on early development of shallot (Allium ascalonicum) and mustard (Brassica juncea) plants to Bacillus cereus inoculation. Malays J Microbiol 8(1):47–50

    Google Scholar 

  • Bai Y, Souleimanov A, Smith DL (2002) An inducible activator produced by Serratia proteamaculans strain and its soybean growth promoting activity under greenhouse conditions. J Exp Bot 53:1495–1502

    CAS  PubMed  Google Scholar 

  • Barbieri P, Zanelli T, Galli E et al (1986) Wheat inoculation with Azospirillum brasilence Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid. FEMS Microbiol Lett 36:87–90

    CAS  Google Scholar 

  • Bashan Y, de-Bahan LE (2005) Bacteria. In: Hillel D (ed) Encyclopedia of soils in the environment, vol 1. Elsevier, UK, pp 103–115

    Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol. Biochem 30:1225–1228

    CAS  Google Scholar 

  • Beauchamp CJ (1993) Mode of action of plant growth-promoting rhizobacteria and their potential use as biological control agents. Phytoprotection 71:19–27

    Google Scholar 

  • Beever RE, Burns DJW (1980) Phosphorus uptake, storage and utilization by fungi. Adv Bot Res 8:127–219

    CAS  Google Scholar 

  • Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting Rhizobacteria. Biocontrol Sci Technol 11(5):557–574

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    CAS  PubMed  Google Scholar 

  • Bisen PS, Verma K (1996) Handbook of microbiology. CBS, New Delhi

    Google Scholar 

  • Bowen GD, Rovira AD (1999) Therhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Google Scholar 

  • Bringhurst RM, Cardon ZG, Gage DJ (2001) Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. PNAS 98:4540–4545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Camilleri C, Jouanin L (1991) The TR-DNA region carrying the auxin synthesis genes of the Agrobacterium rhizogenes agropine-type plasmid pRiA4: nucleotide sequence analysis and introduction into tobacco plants. Mol Plant Microbe Interact 4:155–162

    CAS  PubMed  Google Scholar 

  • Caron M, Patten CL, Ghosh S et al (1995) Effects of plant growth promoting rhizobacteria Pseudomonas putida GR-122 on the physiology of canolla roots. In: Green DW(ed) Proceedings of the plant growth regulation society of America, 22nd proceeding, 18-20 July

    Google Scholar 

  • Chen CC, Wang MK, Chiu CY, Huang PM, King HB (2001) Determination of low molecular weight dicarboxylic acids and organic functional groups in rhizosphere and bulk soils of Tsuga and Yushania in a temperate rain forest. Plant Soil 231:37–44

    CAS  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    PubMed  Google Scholar 

  • Costacurta A, Keijers V, Vanderleyden J (1994) Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol Gen Genet 243:463–472

    CAS  PubMed  Google Scholar 

  • Crowley DE, Reidd CPP, Szaniszlo PJ (1987) Mirobial siderophores as iron sources for plants. In: Winkelmann GD, Van der H, Neilands JB (eds) Iron transport in animals, plants and microorganisms. VCH Chemie, Weinheim

    Google Scholar 

  • Dashti N, Zhang F, Hynes R, Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean (Glycine max (L) Merr) under short season condition. Plant Soil 200:205–213

    CAS  Google Scholar 

  • De Freitas JR, Germida JJ (1991) Pseudomonas cepacia and Pseudomonas putida as winter wheat inoculants for biocontrol of Rhizobium solani. Can J Microbiol 37:780–789

    Google Scholar 

  • De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24(4):358–364

    CAS  Google Scholar 

  • Deshwal VK, Dubey RC, Maheshwari DK (2003) Isolation of plant growth promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcol rot of peanut. Curr Sci 84:443–444

    Google Scholar 

  • Dey Vay JE, Lukezic FL, Sinden SL, English H, Coplin DL (1968) A biocide produced by pathogenic isolates of Pseudomonas syringae and its possible role in bacterial canker disease of peach trees. Phytopathology 58:95–101

    Google Scholar 

  • Dimkpa C, Svatos A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    CAS  PubMed  Google Scholar 

  • Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 1331:900–910

    Google Scholar 

  • Fernández C, Novo R, (1988) Vida Microbiana en el Suelo, II. La Habana: Editorial Pueblo y Educación, p 220

    Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR: Biocontrol and biofertilization. Springer, Dordrecht, pp 111–142

    Google Scholar 

  • Franche C, Lindstrӧm K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Google Scholar 

  • Frankenberger WT Jr, Arshad M (1991) Microbial production of plant growth regulating substances in soil. In: Keel C, Koller B, Defago G (eds) Plant growth-promoting rhizobacteria, progress and prospects. The Second International Workshop on PGPR. Interlaken, p 162-171, 14–19 Oct 1990

    Google Scholar 

  • Frankenberger WT Jr, Arshad M (1995) Phytohormones in soils. Microbial Production and Function. Marcel Dekker, New York, pp 5–40

    Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Mcobiol 56:403–407

    CAS  Google Scholar 

  • Ghosh D, Bal B, Kashyap VK, Pal S (2003) Molecular phylogenetic exploration of bacteria diversity in a Bakreshwar (India) hot spring and culture of Shewanella related thermophiles. Appl Environ Microbiol 69:4332–4336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can. J Microbiol 41:109–250

    CAS  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM, Washington DC, pp 197–203

    Google Scholar 

  • Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res 65:93–106

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:5–412

    Google Scholar 

  • Gupta A, Gopal M (2008) Siderophore production by plant growth promoting rhizobacteria. Indian J Agric Res 42(2):153–156

    Google Scholar 

  • Gupta A, Gopal M, Tilak KV (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862

    CAS  PubMed  Google Scholar 

  • Hariprasad P, Niranjan SR (2009) Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil 316:13–24

    CAS  Google Scholar 

  • Harris WR, Carrano CJ, Raymond KN (1979) Microbial Iron Acquisition: Marine and Terrestrial Siderophores. J Am Chem Soc 101:2722

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Google Scholar 

  • Herman MAB, Nault BA, Smart CD (2008) Effects of plant growth promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. Crop Protect 27:996–1002

    Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation to agricultural systems. Plant Soil 311:1–18

    CAS  Google Scholar 

  • Husen E (2003) Screening of soil bacteria for plant growth promotion activities in vitro. Indones J Agric Sci 4(1):27–31

    Google Scholar 

  • Inbar J, Chet I (1991) Evidence that chitinase produced by Aeromonas caviae is involved in the biological control of soil-borne plant pathogens by bacterium. Soil Biol Biochem 23:974–978

    Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333

    CAS  PubMed  Google Scholar 

  • Jacobsen CS (1997) Plant protection and rhizosphere colonization of barley by seed inoculated herbicide degrading Burkholderia (Pseudomonas) cepacia DBO1(pRO101) in 2,4-D contaminated soil. Plant Soil 189:139–144

    CAS  Google Scholar 

  • Jha PN, Kumar A (2007) Endophytic colonization of Typhaaustralis by a plant growth-promoting bacteria Klebsiella oxytoca strain GR-3. J Applied Micobiol 103:1311–1320

    CAS  Google Scholar 

  • Jiang C, Sheng X, Qian M, Wang Q (2008) Isolation and characterization of a heavy metal- resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164

    CAS  PubMed  Google Scholar 

  • Joseph B, Patra RR, Lawerence R (2007) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod 2:141–152

    Google Scholar 

  • Kapulnik Y (1996) Plant growth promoting rhizosphere bacteria. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots the hidden half. Marcel Dekker, NY, pp 769–781

    Google Scholar 

  • Kay E, Dubuis C, Haas D (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci 102(47):17136–17141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    CAS  PubMed  Google Scholar 

  • Kloepper JW (1993) Plant-growth-promoting rhizobacteria as biological control agents. In: Metting FB Jr (ed) Soil Microbial Ecology. Marcel Dekker, New York, pp 255–273

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. Fourth international conference on plant pathogen bacteria, vol 2. Angers, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980a) Enhancing plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980b) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    CAS  Google Scholar 

  • Kokalis-Burelle N, Kloepper JW, Reddy MS (2006) Plant growth promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Appl Soil Ecol 31:91–100

    Google Scholar 

  • Kumar A, Prakash A, Johri BN (2011) Bacillus as PGPR in Crop Ecosystem. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems, pp 37–59

    Google Scholar 

  • Kumar BSD (1999) Fusarial wilt suppression and crop improvement through two rhizobacterial strains in chick pea growing in soils infested with Fusarium oxysporum f.sp. ciceris, Biol Fert Soils 29:87–91

    Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown n fly ash amended soil. Chemosphere 72:678–683

    CAS  PubMed  Google Scholar 

  • Ladwal A, Bhatia D, Malik DK (2012) Effect of coinoculation of Mesorhizobium cicer with PGPR on Cicer arietinum. Aust J Basic Appl Sci 6(9):183–187

    CAS  Google Scholar 

  • Lambert B, Joos H, Dierick S, Vantomme R, Swings J, Kerters K, Van Montagu M (1990) Identification and plant interaction of Phyllobacterium sp. a predominant rhizobacterium of young sugar beet. Appl Environ Microbiol 56:1093–1102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laslo E, György E, Mara G, Tamás É, Ábrahám B, Lányi S (2012) Screening of plant growth promoting rhizobacteria as potential microbial inoculants. Crop Prot 40:43–48

    CAS  Google Scholar 

  • Lazarovits G, Nowak J (1997) Rhizobacteria for improvement of plant growth and establishment. Hort Sci 32:188–192

    Google Scholar 

  • Lemanceau P, Albouvette C (1993) Suppression of Fusarium wilts by fluorescent Pseudomonads: mechanisms and applications. Biocontrol Sci Technol 3:219–234

    Google Scholar 

  • Lemaux PG (1999) Plant growth regulators and biotechnology. Western plant growth regulator society presentation, Anaheim

    Google Scholar 

  • Lenin G, Jayanthi M (2012) Efficiency of Plant Growth Promoting Rhizobacteria (PGPR) on enhancement of growth, yield and nutrient content of Catharanthus roseus. Int J Res Pure Appl Microbiol 2(4):37–42

    Google Scholar 

  • Lindström K, Martínez-Romero E (2007) International committee on systematics of prokaryotes subcommittee on the taxonomy of Agrobacterium and Rhizobium: minutes of the meeting, 23-24 July 2006, Århus. Int J Syst Evol Microbiol 57:1365–1366

    Google Scholar 

  • Link GKK, Eggers V (1941) Hyperauxiny in crown gall of tomato. Bot Gaz 103:87–106

    CAS  Google Scholar 

  • Loper JE, Buyer JS (1991) Molecular Pl. Microb Interact 4(1):5–13

    CAS  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65(12):5357–5363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lwin KM, Myint MM, Tar T, Aung WZM (2012) Isolation of plant hormone (indole-3-acetic acid-IAA) producing rhizobacteria and study on their effects on maize seedling. Eng J 16(5):137–144

    Google Scholar 

  • Lynch JM (1985) Origin, nature and biological activity of aliphatic substances and growth hormones found in soil. In: Vaughan D, Malcom RE, Martinus N (eds) Soil organic matter and biological activity. Dr. W. Junk Publishers, Dordrecht, pp 151–174

    Google Scholar 

  • Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with fieldgrown cucumber (Cucumis sativus L.). Microb Ecol 34:210–223

    PubMed  Google Scholar 

  • Maksi-mov IV, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (Review). Appl Biochem Microbiol 47:333–345

    CAS  Google Scholar 

  • Martinez-Romero E, Wang ET, (2000) Sesbania herbacea-Rhizobium huautlense nodulation in flooded soils and comparative characterization of S. herbaces nodulating rhizobia in different environments. Microb Ecol 41:25–32

    Google Scholar 

  • Montanez A, Abreu C, Gill PR, Hardarson G, Sicardi M (2009) Biological nitrogen fixation in maize (Zea mays L.) by N-15 isotope-dilution and identification of associated culturable diazotrophs. Biol Fertil of Soil 45:253–263

    CAS  Google Scholar 

  • Neeru N, Vivek K, Rishi K, Wolfgancy M (2000) Effect of P-solubilizing Azotobacter chroococcum on N, P, K uptake in p-responsive genotypes grown under greenhouse condition. J Plant Nutr Soil Sci 163:393–398

    Google Scholar 

  • Nelson EB (1998) Biological control of pythium seed rot and preemergence damping-off of cotton with Enterobacter cloacae and Ervinis herbicola applied as seed treatments. Plant Dis 72:140–142

    Google Scholar 

  • Newton WE (2007) Physiology, biochemistry and molecular biology of nitrogen fixation. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam, pp 109–130

    Google Scholar 

  • Nielsen TH, Sørensen J (2003) Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl Environ Microbiol 69:861–868

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonads species involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed Central  PubMed  Google Scholar 

  • Osborne DJ, McManus MT (2005) Hormones, signals and target cells in plant development. Cambridge University Press p 158. ISBN 978-0-521-33076–33083

    Google Scholar 

  • Pedraza RO, Bellone CH, Bellone de S, Sorte PMB, Teixeira KRD (2009) Azospirillum inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. Eur J Soil Biol 45:36–43

    CAS  Google Scholar 

  • Pollack JR, Neilands JB (1970) Enterobactin, an iron transport compound from Salmonella typhimurium. Biochem Biophys Res Commun 38:989

    Google Scholar 

  • Poonguzhali S, Madhaiyan M, Sa TM (2008) Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18:773–777

    CAS  PubMed  Google Scholar 

  • Postgate JR (1982) The fundamentals of nitrogen fixation. Cambridge University Press, Cambridge United Kingdom p 271

    Google Scholar 

  • Pradhan N, Sukla LB (2006) Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr J Biotechnol 5:850–854

    CAS  Google Scholar 

  • Prithiviraj B, Zhou X, Souleimanov A, Kahn W, Smith DL (2003) A host-specific bacteria-to-plant signal molecule (Nod factor) enhances germination and early growth of diverse crop plants. Planta 216:437–445

    CAS  PubMed  Google Scholar 

  • Raghu K, MacRae IC (1966) Occurrence of phosphate-dissolving microorganisms in the rhizosphere of rice plants and in submerged soils. J Appl Bacteriol 29:582–586

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth promoting bacteria on the growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Nagendran R, Kui JL, Wang HL, Sung ZK (2006) Influence of plant growth promoting bacteria and Cr (VI) on the growth of Indian mustard. Chemosphere 62:741–748

    CAS  PubMed  Google Scholar 

  • Rani A, Souche YS, Goel R (2009) Comparative assessment of in situ bioremediation potential of cadmium resistant acidophilic pseudomonas putida 62BN and alkalophilic pseudomonas monteilli 97AN strains on soybean. Int Biodeterior Biodegrad 63:62–66

    CAS  Google Scholar 

  • Raymond KN, Müller G, Matzanke BF (1984) Complexation of Iron by siderophores review of their solution and structural chemistry and biological function. Top Curr Chem 123:49–102

    CAS  Google Scholar 

  • Reddy MS, Wang Q (2011) Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. Proceedings of the 2nd Asian PGPR conference August 21-24, Beijing, P.R. China.

    Google Scholar 

  • Robinson RL, Postgate JR (1980) Oxygen and nitrogen in biological nitrogen fixation. Ann Rev Microbiol 34:182–207

    Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    PubMed  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006).Bacterial endophytes and their interactions with hosts. Mol Plant-Microb Interact 19:827–837

    CAS  Google Scholar 

  • Ryder MH, Jones DA (1990) Biological control of crown gall. In: Hornby D, Cook RJ, Henis Y (eds) Biological control of soil-borne plant pathogens. CAB International, Oxford, UK, pp 45–63

    Google Scholar 

  • Ryder MH, Yan Z, Terrace TE, Rovira AD, Tang W, Correll RL (1999) Use of strains of Bacillus isolated in China to suppress take-all and rhizoctonia root rot, and promote seedling growth of glasshouse grown wheat in Australian soils. Soil Biol Biochem 31:19–29

    CAS  Google Scholar 

  • Ryu R, Patten CL (2008) Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by 4 TyrR in Enterobacter cloacae UW5. Am Soc Microbiol 190(21):1–35

    Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J Basic Microbiol 53, 303–317. Doi: 10. 1002/jobm. 201100552

    Google Scholar 

  • Sala VMR, Cardoso E, Freitas de JG, Silveira da APD (2007) Wheat genotypes response to inoculation of diazotrophic bacteria in field conditions. Pesquisa Agropecuária Brasileira 42:833–842

    Google Scholar 

  • Schippers et al (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Ann Rev Phytopathol 25:339–358

    Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008) Cold tolerance and plant growth promotion potential of serratia marcescens strain SRM (MTCC 8708) Isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    CAS  PubMed  Google Scholar 

  • Shah Z, Shah AN, Ansari ST (2011) Utilizing rhizobacteria for sustainable wheat production: role of phosphate solubilizing ACC-deaminase rhizobacteria under phosphorus deficiency stress. Lap Lambert Academic Publishing

    Google Scholar 

  • Sharma S, Kumar V, Tripathi RB (2011) Isolation of phosphate solubilizing microorganism (PSMs) from soil. J Microbiol Biotech Res 1(2):90–95

    Google Scholar 

  • Simon S, Petrášek J (2011) Why plants need more than one type of auxin. Plant Sci 180(3):454–460

    CAS  PubMed  Google Scholar 

  • Sindhu SS et al (1997) Biotechnological approaches in soil microorganisms for sustainable crop production. Scientific Publishers, Jodhpur, pp 149–170

    Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Google Scholar 

  • Singh N, Pandey P, Dubey RC, Maheshwari DK (2008) Biological contro of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii by rhizosphere competent Bacillus subtilis BN1. World J Microbiol Biotechnol 24:1669–1679

    Google Scholar 

  • Singh RP (2005) Biological nitrogen fixation. Microbiology Kalyani Publishers, Head office B-1/292, Rajinder Nagar, Ludhiana

    Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R, (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    CAS  PubMed  Google Scholar 

  • Stewart WDP (1969) Biological and ecological aspects of nitrogen fixation by free-living microorganisms. Proc Roy Soc B (London) 172:367–388

    CAS  Google Scholar 

  • Sugawara S, Hishiyama S, Jikumaru Y, Hanada A, Nishimura T, Koshiba T, Zhao Y, Kamiya Y, Kasahara H, (2009) Biochemical Analyses of Indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 106(13):5430–5435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signaling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    CAS  PubMed  Google Scholar 

  • Thomashow LS (1996) Biological control of plant root pathogens. CurrOpin Biotechnol 7:343–347

    CAS  Google Scholar 

  • Thomshaw LS, Webler DM (1995) Current concepts in the use of introduced bacteria for biological disease control of Gaeumamomyces graminis var tritici. J Bacteriol 170:3499–3508

    Google Scholar 

  • Thomshow LS, Bonsal RF, Weller DM (2003) Detection of antibiotics production by soil and rhizosphere microbes in situ. Thomashow lab methods: 1–13

    Google Scholar 

  • Vadakattu GVSR, Kasper ML, Jankovic-Karasoulos T, Elliott ET (2006) Macroaggregate environment influences the composition and activity of associated microbiota communities. 18th World Congress of Soil Science Philadelphia Pennsylvania USA

    Google Scholar 

  • Vance C (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:391–397

    Google Scholar 

  • Verma JP, Yadav J, Tiwaric KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286

    Google Scholar 

  • Vessey JK (2003) Plant growth-promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Wagner SC (2012) Biological nitrogen fixation. Nat Educ Knowl 3(10):15

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Co inoculation of nitrogen fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hung 55:315–323

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (Vigna) on growth symbiosis seed yield and metal uptake by Greengram plants. Chemosphere 70:36–45

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007c) Synergistic effects of the inoculation with nitrogen fixing and phosphate solubilizing rhizospheria on the performance of yield grown chickpea. J Plant Nutr Soil Sci 170:283–287

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Chromium reducing and plant growth-promoting Mesorhizobium improves chicpea growth in chromium-amended soil. Biotechnol Lett 30:159–163

    CAS  PubMed  Google Scholar 

  • Weller DM, Thomashow LS (1993) Use of rhizobacteria for biocontrol. Curr Opin Biotechnol, 4:306–311

    Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plantemicrobe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    CAS  PubMed  Google Scholar 

  • White PR, Braun AC (1941) Crown gall productions by bacteria free tumor tissues. Science 93:239–241

    Google Scholar 

  • Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y (2011) Conversion of tryptophan to indole-3-acetic acid by Tryptophan Aminotransferases of Arabidopsis and Yuccas in Arabidopsis. Proc Natl Acad Sci U S A 108(45):18518–18523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yadav J, Verma JP, Tiwari KN (2010) Effect of plant growth promoting rhizobacteria on seed germination and plant growth chickpea (Cicer arietinum L.) under in vitro conditions. Biol Forum Int J 2(2):15–18

    Google Scholar 

  • Yahalom E, Okon Y, Dovrat A (1987) Azosprillium effect on susceptibility to rhizobium nodulation and on nitrogen fixation of several forage Can. J Microbiol 33:510–514

    CAS  Google Scholar 

  • Yuen GY, Schroth MN, McCain AH (1985) Reduction of Fusarium wilt of carnation with suppressive soils and antagonistic bacteria. Plant Dis 69:1071–1075

    Google Scholar 

  • Zahran HH, Ahmed MS, Afkar EA (1995) Isolation and characterization of nitrogen-fixing moderate halophilic bacteria from saline soils of Egypt. Basic Microbiol 35:269–275

    Google Scholar 

  • Zhang F, Dhasti N, Hynes R, Smith DL (1996) Plant growth promoting rhizobacteria and soybean (Glycinemax (L.)Merr.) nodulation and nitrogen fixation at sub-optimal root zone temperatures. Ann Bot 77: 453–459

    Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Gopal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Dwivedi, S., Gopal, R. (2014). Sustainable Agriculture and Plant Growth Promoting Rhizobacteria. In: Kharwar, R., Upadhyay, R., Dubey, N., Raghuwanshi, R. (eds) Microbial Diversity and Biotechnology in Food Security. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1801-2_29

Download citation

Publish with us

Policies and ethics