Advertisement

Occurrence of Stone Fruit Yellows Phytoplasma Disease (Candidatus Phytoplasma prunorum) in Hungary and Central Europe

  • Gábor TarcaliEmail author
  • György J. Kövics
  • Emese Kiss
Chapter

Abstract

Plant diseases caused by phytoplasmas have an increasing importance all over the world for fruit growers. Lately, phytoplasma diseases occur on many fruit species and are responsible for serious losses both in quality and quantity for fruit production. Apricot phytoplasma disease (Candidatus Phytoplasma prunorum) was reported first from France in Europe in 1924. Then, the pathogen spread in all European apricot-growing areas. In 1992, the disease was identified in Hungary first. Based on the growers’ signals, serious damage of Ca. Phytoplasma prunorum (Seemüller and Schneider, International Journal of Systematic and Evolutionary Microbiology, 54, 2004, 1217–1226; formerly: European stone fruit yellows (ESFY) phytoplasma) could be observed in several stone fruit orchards in the famous apricot-growing area nearby the town of Gönc, northern Hungary. Field examinations were started in 2009 in the infested stone fruit plantations in Borsod-Abaúj-Zemplén County, mainly in Gönc region, which is one of the most important apricot-growing areas in Hungary, named “Gönc Apricot-growing area”. Our goals were to diagnose the occurrence of Ca. Phytoplasma prunorum on stone fruits (especially on apricot) in the North Hungarian growing areas by visual diagnostics and to confirm data by laboratory polymerase chain reaction (PCR)-based examinations. All the 40 collected samples were tested in laboratory trials and in 22 samples from apricot, peach, cherry, sour cherry and wild plum were confirmed the presence of phytoplasma (ESFY). Field investigations were done in a western Romanian apricot plantation, and the presence of apricot phytoplasma disease was confirmed. It was the first finding that Ca. Phytoplasma prunorum occurred in the western part of Romania. On the basis of these observations, it seems evident that the notable losses caused by Ca. Phytoplasma prunorum is a new plant health challenge for fruit growers to manage, especially for apricot producers in Hungary and other central European countries.

Keywords

Phytoplasma Ca. Phytoplasma prunorum European stone fruit yellows pytoplasma Gönc apricot-growing area Stone fruits Apricot Peach Cherry Cacopsylla pruni 

References

  1. Bernhard R, Marenaud C, Eymet J, Sechet J, Fos A, Moutous G (1977) Une maladie complex de certain Prunus: Le dépérissement de Moliéres. CR Acad Agric 2(2):178–189Google Scholar
  2. Carraro L, Loi N, Ermacora P, Osler R (1998) High tolerance of European plum varieties to plum leptonecrosis. Eur J Pt Pathol 104:141–145CrossRefGoogle Scholar
  3. Carraro L, Loi N, Ermacora P (2001) Transmission characteristics of the European stone fruit yellows phytoplasma and its vector Cacopsylla pruni. Eur J Plant Pathol 107:695–700CrossRefGoogle Scholar
  4. Chabrolin C (1924) Quelques maladies des arbres fruitiéres de la vallée du Rhone. Ann Epiphyties 10:265–333Google Scholar
  5. Doi Y, Teranaka M, Yora K, Asuyama H (1967) Mycoplasma or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches broom, aster yellows, or paulownia witches broom. Ann Phytopathol Soc Jpn 33:259–266CrossRefGoogle Scholar
  6. Fialová R, Navrátil M, Lauterer P, Navrkalová V (2007) Candidatus Phytoplasma prunorum: the phytoplasma infection of Cacopsylla pruni from apricot orchards and from overwintering habitats in Moravia (Czech Republic). Bull Insectology 60(2):183–184Google Scholar
  7. Gundersen DE, Lee IM, Rehner SA, Davis RE, Kingsbury DT (1994) Phylogeny of mycoplasma organisms (phytoplasmas): a base for their classification. J Bacteriol 176:5244–5254PubMedCentralPubMedGoogle Scholar
  8. Huxley A et al (1992) New RHS dictionary of gardening 1:203–205. Macmillan ISBN 0-333-47494-5Google Scholar
  9. International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of Mollicutes (1993) Minutes of the interim meetings, 1 and 2 August 1992, Ames, Iowa. Int J Syst Bacteriol 43:394–397CrossRefGoogle Scholar
  10. Jarausch W, Lansac M, Saillard C, Broquaire JM, Dosba F (1998) PCR assay for specific detection of European stone fruit yellows phytoplasmas and its use for epidemiological studies in France. Eur J Plant Pathol 104:17–27CrossRefGoogle Scholar
  11. Jarausch W, Eyquard JP, Lansac M, Mohns M, Dosba F (2000) Susceptibility and tolerance of new French Prunus domestica cultivars to European stone fruit yellows phytoplasma. J Phytopathol 148(7):489–493CrossRefGoogle Scholar
  12. Jarausch W, Jarausch-Wehrheim B, Danet JL, Broquaire JM, Dosba F, Saillard C, Garnier M (2001) Detection and identification of European stone fruit yellows and other phytoplasmas in wild plants in the surroundings of apricot chlorotic leaf roll-affected orchards in southern France. Eur J Plant Pathol 107:209–217CrossRefGoogle Scholar
  13. Kirkpatrick BC (1989) Strategies for characterizing plant pathogenic mycoplasma-like organisms and their effects on plants. In: Kosuge T, Nester EW (eds) Plant-microbe interactions, molecular and genetic perspectives. vol. 3. McGraw-Hill, New York, pp 241–293Google Scholar
  14. Kirkpatrick BC (1991) Mycoplasma-like organisms. Plant and invertebrate pathogens. In: Balows A, Triiper GH, Dworkin M, Harder W, Schliefer KH (eds) The prokaryotes vol. 2. Springer, New York.Google Scholar
  15. Kirkpatrick BC, Smart CD, Gardner S et al (1994) Phylogenetic relationship of plant pathogenic MLO-s established by 16/23 S rDNA spacer sequences. IOM Lett 3:228–229Google Scholar
  16. Kiske CR, Kirkpatrick BC, Seemüller E (1991) Differentiation of virescence MLOs using western aster yellows mycoplasma-like organism chromosomal DNA probes and restriction fragment length polymorphism analysis. J Gen Microbiol 137:153–159CrossRefGoogle Scholar
  17. Kövics G (2009) Növénykórtani vademecum. NOFKA Debrecen pp 470Google Scholar
  18. Lederer M, Seemüller E (1992) Demonstration of mycoplasmas in Prunus species in Germany. J Phytopathol 134:89–96CrossRefGoogle Scholar
  19. Lorenz KH, Dosba F, Poggi Pollini C, Llacer G, Seemüller E (1994) Detection of the apple proliferation and pear decline phytoplasmas by PCR amplification of ribosomal and nonribosomal DNA. Phytopathol 85:771–776CrossRefGoogle Scholar
  20. Marwitz R (1990) Diversity of yellows disease agents in plant infections. Zentralblatt für Bakteriologie Suppl 20(43):1–434Google Scholar
  21. McCoy RE, Caudwell A, Chang CJ, Chen TA, Chiykowski IN, Cousin MT, Dale JL, de Leeuw GTN, Golino DA, Hackett KJ, Kirkpatric BC, Marwitz R, Petzhold H, Sinha RC, Sugiura M, Whitecomb F, Young IL, Zhu BM, Seemüller E (1989) Plant diseases associated with mycoplasma-like organisms. In: Whitcomb RF, Tully JG (eds) The Mycoplasmas vol V. Academic Press, San Diego, pp 545–640CrossRefGoogle Scholar
  22. Mergenthaler E (2004) Fitoplazmás betegségek Magyarországon: Korszerü diagnosztikai módszerek fejlesztése. Doktori értekezés. Budapesti Közgazdaságtudományi és Államigazgatási Egyetem Kertészettudományi Kar, Budapest pp 164Google Scholar
  23. Mona G, Kadriye C, Cigdem US, Levent S (2008) Evaluations of apricot trees infected by Candidatus Phytoplasma prunorum for horticultural characteristics. Romanian biotechnological letters, Bucharest University. Rom Soc Biol Sci 14(1):4123–4129Google Scholar
  24. Morvan G (1977) Apricot clorotic leaf roll. EPP Bull 7:37–55CrossRefGoogle Scholar
  25. Navratil M, Valova P, Fialova R, Patrova K (2001) Survey for stone fruit phytoplasmas in the Czech Republic. Acta Hortic 550:377–382Google Scholar
  26. Németh M (1986) Virus, mycoplasma and rickettsia diseases of fruit trees. Martinus Nijhoff Publishers, the Netherlands and Akadémiai Kiadó, Budapest, pp 840Google Scholar
  27. Németh M, Ember I, Krizbai L, Kölber M, Hangyál R, Bozsics G (2001) Detection and identification of phytoplasmas in peach based on woody indexing and molecular methods. Int J Hortic Sci 7:37–41Google Scholar
  28. Seemüller E, Schneider B (2004) Candidatus Phytoplasma mali, Candidatus Phytoplasma pyri and Candidatus Phytoplasma prunorum, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. Int J Syst Evol Microbiol 54:1217–1226PubMedCrossRefGoogle Scholar
  29. Süle S (2003) A kajszi baktériumos és fitoplazmás betegségei. In: Pénzes B, Szalay L (eds) Kajszi. Mezӧgazda Kiadó, Budapest. pp 282–291Google Scholar
  30. Süle S, Viczián O, Pénzes B (1997) A kajszi fitoplazmás pusztulása. Kertészet és Szӧlészet 45:8–11Google Scholar
  31. Tarcali G, Kövics GJ (2009) Occurrence of stone fruit yellows phytoplasma disease in Gönc region, northern-Hungary. 5th international plant protection symposium at University of Debrecen, 20–22 October 2009, Debrecen, Hungary. Journal of Agricultural Sciences/Acta Agraria Debreceniensis, University of Debrecen 38:69–74Google Scholar
  32. Torres E, Martin MP, Paltrinier S, Vila A, Masalles R, Bertaccini A (2004) Spreading of EFSY phytoplasmas in stone fruit in Catalonia (Spain). J Phytopathology 152:432–437CrossRefGoogle Scholar
  33. Varga K, Kölber M, Németh M, Ember I, Erdӧs Z, Bíró E, Paltrinieri S, Martini M, Bertaccini A (2001) Identification of phytoplasmas infecting sour cherry in Hungary. XVIII international symposium on virus and virus-like diseases of temperate fruit crops—top fruit diseases. ISHS Acta Horticulturae 550:383–388Google Scholar
  34. Viczián O, Süle S, Pénzes B, Seemüller E (1997) A kajszi fitoplazmás pusztulása Magyarországon. Új Kertgazd 1:48–51Google Scholar
  35. Welliver R (1999) Diseases Caused by phytoplasmas. Regulatory Horticulture. Plant Pathol Circ 42:17–22Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Gábor Tarcali
    • 1
    Email author
  • György J. Kövics
    • 1
  • Emese Kiss
    • 2
  1. 1.Institute of Plant ProtectionUniversity of DebrecenDebrecenHungary
  2. 2.Department of Biotechnology, Plant Protection InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations