Environmental Effects of the Fukushima Daiichi Nuclear Power Plant Accident

  • Katsumi Hirose


A gigantic earthquake and resulting tsunami, occurred on March 11, 2011, causing the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Large amounts of radionuclides emitted in the atmosphere (131I: 160 PBq, 137Cs: 15 PBq) and predominantly deposited on the Japanese Island and the western North Pacific, and a considerable part of them were dispersed in the Northern Hemisphere. After the accident, the Japanese Government started emergency monitoring of environmental radioactivity. Worldwide radioactivity measurements including CTBTO in the Northern Hemisphere had detected the Fukushima-derived radionuclides in the atmosphere. In this chapter, environmental radioactivity monitoring results in the early stage of the Fukushima accident are described.


Fukushima earthquake Atmospheric radioactivity Radioactivity contamination mapping Ambient dose rate measurement 



Author thanks monitoring staffs and officers of MEXT for great efforts to measure environmental radioactivity.


  1. Amachi S, Kamagata Y, Kanagawa T, Muramatsu Y (2011) Bacteria mediate methylation of iodine in marine and terrestrial environment. Appl Environ Microbiol 67:2918–2722Google Scholar
  2. Amano H, Akiyama M, Chunlei B, Kawamura T, Kishimoto T, Kuroda T et al (2012) Radiation measurements in the Chiba Metropolitan area and radiological aspects of fallout from the Fukushima Daiichi Nuclear Power Plants accident. J Environ Radioact 111:42–52CrossRefGoogle Scholar
  3. Aoyama M (1988) Evidence of stratospheric fallout of caesium isotopes from the chernobyl accident. Geophys Res Lett 15:327–330CrossRefGoogle Scholar
  4. Aoyama M, Hirose K, Takatani S (1992) Particle size dependent dry deposition velocity of the Chernobyl radioactivity. In Hemisphere Precipitation scavenging and atmospheric exchange processes; Fifth International Conference, vol 3, pp 1581–1593Google Scholar
  5. Aoyama M, Tsumune D, Hamajima Y (2012) Budgets and temporal change of radiocesium distribution released from Fukushima NPP accidents in the North Pacific Ocean, 2012 Ocean Science Meeting, abstract ID10092Google Scholar
  6. Balkanski YJ, Jacob DJ, Gardner GM, Graustein WC, Turekian KK (1993) Transport and residence time of tropospheric aerosols inferred from a global three-dimensional simulation of 210Pb. J Geophys Res 98:20573–20586CrossRefGoogle Scholar
  7. Beresford NA, Barnett CL, Howard BJ, Howard DC, Wells C, Tyler AN, Bradley S, Copplestone D (2012) Observations of Fukushima fallout in Great Britain. J Environ Radioact 114:48–53. doi:10.1016/j.jenvrad.2011.12.008Google Scholar
  8. Biegalski SR, Bowyer TW, Eslinger PW, Friese JA, Greenwood LR, Haas DA, Hayes JC, Hoffman I, Keillor M, Miley HS, Moring M (2011) Analysis of data from sensitive U.S. monitoring stations for the Fukushima Dai-ichi nuclear reactor accident. J Environ Radioact 114:15–21CrossRefGoogle Scholar
  9. Bolsunovsky A, Dementyev D (2011) Evidence of the radioactive fallout in the center of Asia (Russia) following the Fukushima Nuclear Accident. J Environ Radioact 102:1062–1064CrossRefGoogle Scholar
  10. Bowyer TW, Biegalski SR, Cooper M, Eslinger PW, Haas D, Hayes JC et al (2011) Elevated radioxenon detected remotely following the Fukushima nuclear accident. J Environ Radioact 102:681–687CrossRefGoogle Scholar
  11. Carvalho FP, Reis MC, Oliveira JM, Malta M, Silva L (2012) Radioactivity from Fukushima nuclear accident detected in Lisbon, Portugal. J Environ Radioact 114:152–156CrossRefGoogle Scholar
  12. Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of released amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J Nucl Sci Technol 48:1129–1134CrossRefGoogle Scholar
  13. Clemenza M, Fiorini E, Previtali E, Sala E (2012) Measurement of airborne 131I, 134Cs and 137Cs due to the Fukushima reactor incident in Milan (Italy). J Environ Radioact 114:152–156CrossRefGoogle Scholar
  14. CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization) (2011).
  15. Doi T, Masumoto K, Toyoda A, Tanaka A, Shibata Y, Hirose K (2013) Anthropogenic radionuclides in the atmosphere observed at Tsukuba: Characteristics of the radionuclides derived from Fukushima. J Environ Radioact 122:55–62CrossRefGoogle Scholar
  16. Ehhalt DH (1973) Turnover tomes of 137Cs and HTO in the troposphere and removal rates of natural particles and vapor. J Geophys Res 78:7076–7086CrossRefGoogle Scholar
  17. Furuta S, Sumiya S, Watanabe H, Nakano M, Imaizumi K, Takeyasu M et al (2011) (In Japanese) Results of the environmental radiation monitoring following the accident at the Fukushima Daiichi nuclear power plant—Interim report (ambient radiation dose rate, radioactivity concentration in the air and radioactivity concentration in the fallout). JAEA-Review 2011-035:1–84Google Scholar
  18. Hirose K (1995) Geochemical studies in the chernobyl radioactivity in environmental samples. J Radioanal Nucl Chem Articles 197:331–342CrossRefGoogle Scholar
  19. Hirose K (2012) 2011 Fukushima Daiichi nuclear power plant accident: summary of regional radioactivity deposition monitoring results. J Environ Radioact 111:13–17CrossRefGoogle Scholar
  20. Hirose K, Takatani S, Aoyama M (1993) Wet deposition of long-lived radionuclides derived from the chernobyl accident. J Atmos Chem 17:61–73CrossRefGoogle Scholar
  21. Hirose K, Igarashi Y, Aoyama M (2008) Analysis of 50 years records of atmospheric deposition of long-lived radionuclides in Japan. Appl Radiat Isot 66:1675–1678CrossRefGoogle Scholar
  22. Hirose K, Kikawada Y, Igarashi Y (2012) Temporal variation and provenance of thorium deposition observed at Tsukuba, Japan. J Environ Radioact 108:24–28CrossRefGoogle Scholar
  23. Huh CA, Hsu S-C, Lin C-Y (2012) Fukushima-derived fission nuclides monitored around Taiwan: free tropospheric versus boundary layer transport. Earth Planet Sci Lett 319–320:9–14CrossRefGoogle Scholar
  24. IAEA (1986) Summary report on the post-accident review meeting on the Chernobyl’ accident. Safety Series No. 75-INSAG-1Google Scholar
  25. Igarashi Y, Aoyama M, Hirose K, Miyao T, Nemoto K, Tomita M, Fujikawa T (2003) Resuspension: decadal monitoring time series of the anthropogenic radioactivity deposition in Japan. J Rad Res 44:319–328CrossRefGoogle Scholar
  26. Igarashi Y, Aoyama M, Hirose K, Povinec PP, Yabuki S (2005) What anthropogenicradionuclides (90Sr and 137Cs) in atmospheric deposition, surface soils and Aeolian dusts suggest for dust transport over Japan. Water Air Soil Poll: Focus 5:51–69CrossRefGoogle Scholar
  27. Igarashi Y, Inomata Y, Aoyama M, Hirose K, Takahashi H, Shinoda Y, Sugimoto N, Shimizu A, Chiba M (2009) Possible change in Asian dust source suggested by atmospheric anthropogenic radionuclides during the 2000s. Atmos Environ 43:2971–2980CrossRefGoogle Scholar
  28. IPG (Ibaraki Prefectural Government) (2011) Accessed Mar 2014
  29. Kanai Y (2012) Monitoring of aerosols in Tsukuba after Fukushima Nuclar Power Plant incident in 2011. J Environ Radioact 111:33–37CrossRefGoogle Scholar
  30. Kaneyasu N, Ohashi H, Suzuki F, Okuda T, Ikemori F (2012) Sulfate aerosol as a potential transport medium of radiocesium from the Fukushima nuclear accident. Environ Sci Technol 46:5720–5726CrossRefGoogle Scholar
  31. Katsuragi Y (1983) A study of 90Sr fallout in Japan. Pap Meteor Geophys 33:277–291CrossRefGoogle Scholar
  32. Kim C-K, Byun J-I, Chae J-S, Choi H-Y, Choi S-W, Kim D-J et al (2012) Radiological impact in Korea following the Fukushima nuclear accident. J Environ Radioact 111:70–82CrossRefGoogle Scholar
  33. Lambert G, Polian G, Sanak J, Ardouin B, Buisson A, Jegou A, Leroulley JC (1982) Cycle du radon et de ses descendants: application a l’étude des èchanges troposphère-stratosphère. Ann Geophys 38:497–531Google Scholar
  34. Long NQ, Truong Y, Hien PD, Binh NT, Sieu LN, Giap TV, Phan NT (2012) Atmospheric radionuclides from the Fukushima Dai-ichi nuclear reactor accident observed in Vietnam. J Environ Radioact 111:53–58CrossRefGoogle Scholar
  35. Lozano RL, Hernández-Ceballos MA, Adame JA, Casas-Ruíz M, Sorribas M, San Miguel EG, Bolívar JP (2011) Radioactive impact of Fukushima accident on the Iberian Peninsula: evolution and plume previous pathway. Environ Int 37:1259–1264CrossRefGoogle Scholar
  36. Lujaniené G, Bycenkiené S, Povinec PP, Gera M (2012) Radionuclides from the Fukushima accident in the air over Lithuania: measurement and modeling approaches. J Environ Radioact 114:71–80CrossRefGoogle Scholar
  37. Lyons C, Colton D (2012) Aerial measuring system in Japan. Health Phys 102:509–515CrossRefGoogle Scholar
  38. Manolopoulou M, Vagena E, Syoulos S, Loannidou A, Papastefanou C (2011) Radioiodine and radiocesium in Thessaloniki, Greece due to the Fukushima nuclear accident. J Environ Radioact 102:796–797CrossRefGoogle Scholar
  39. Masson O et al (2011) Tracking of airborne radionuclides from the damaged Fukushima Dai-ichi nuclear reactors by European networks. Environ Sci Technol 45:7670–7677CrossRefGoogle Scholar
  40. MEXT (Ministry of Education, Culture, Sports, Science and Technology) (2012) Accessed Mar 2012
  41. Momoshima N, Sugihara S, Ichikawa R, Yokoyama H (2012) Atmospheric radionuclides transported to Fukuoka, Japan remote from the Fukushima Daiichi nuclear power complex following the nuclear accident. J Environ Radioact 111:28–32CrossRefGoogle Scholar
  42. Moore HE, Poet SE, Martell EA (1973) 222Rn, 210Pb, 210Bi, and 210Po profiles and aerosol residence times versus altitude. J Geophys Res 78:7065–7075CrossRefGoogle Scholar
  43. Morino Y, Ohara T, Nishizawa M (2011) Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011. Geophys Res Lett L00G11Google Scholar
  44. Muramatsu Y, Yoshida S (1995) Volatilization of methyl iodine from soil-plant system. Atmos Environ 29:21–25CrossRefGoogle Scholar
  45. NSC (Nuclear Safety Comission) (2011) Accessed Mar 2012
  46. ORNL (Oak Ridge National Laboratory) (2004) ORIGEN ARP 2Google Scholar
  47. Paatero J, Vira J, Siitari-Kauppi. M, Hatakka J, Holmen K, Viisanen Y (2012) Airborne fission products in the high Arctic after the Fukushima nuclear accident. J Environ Radioact 114:41–47CrossRefGoogle Scholar
  48. Pham MK, Eriksson M, Levy I, Nies H, Osvath I, Betti M (2012) Detection of Fukushima Daiichi nuclear power plant accident radioactive tracers in Monaco. J Environ Radioact 114:131–137CrossRefGoogle Scholar
  49. Pittauerová D, Hettwig B, Fischer HW (2011) Fukushima fallout in Northwest German environmental media. J Environ Radioact 102:877–880CrossRefGoogle Scholar
  50. RJG (Report of Japanese Government) (2011) The accident at TEPCO’s Fukushima Nuclear Power 2011. (Revised total release of radionuclides: Accessed Mar 2014
  51. Stohl A, Seibert R, Wotawa G, Arnold D, Burkhart JF, Eckhardt S et al (2011) Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos Chem Phys Discuss 11:28319–28394CrossRefGoogle Scholar
  52. Takemura T, Nakamura H, Takigawa M, Kondo H, Satomura T, Miyasaka T, Nakajima T (2011) A numerical simulation of global transport of atmospheric particles emitted from the Fukushima Daiichi Nuclear Power Plant. Sora 7:101–104Google Scholar
  53. TEPCO (Tokyo Electric Power Co.) (2011) Tentative estimation of atmospheric emission rate of radionuclides from the Fukushima Daiichi NPP. Accessed Mar 2012
  54. UNSCEAR (2000) Sources and effects of ionizing radiation, vol. 1: sources. United Nations, New York, pp 654Google Scholar
  55. Yonezawa C, Yamamoto Y (2011) Measurements of artificial radionuclides in surface air by CTBTO network. BUNSEKI No. 8 pp 451–458 (In Japanese).Google Scholar
  56. Yoshida N, Takahashi Y (2012) Land-surface contamination by radionuclides from the Fukushima Daiichi Nuclear Power Plant accident. Elements 8:201–206CrossRefGoogle Scholar
  57. Zhang W, Bean M, Benotto M, Cheung J, Ungar K, Ahier B (2011) Development of a new aerosol monitoring system and its application in Fukushima nuclear accident related aerosol radioactivity measurement at the CTBT radionuclide station in Sidney of Canada. J Environ Radioact 102:1065–1069CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of Materials and Life Sciences, Faculty of Science and TechnologySophia UniversityTokyoJapan
  2. 2.Geosphere Research InstituteSaitama UniversitySaitamaJapan

Personalised recommendations