Skip to main content

Representation, Fingerprinting, and Modelling of Chemical Reactions

  • Chapter
  • First Online:
Practical Chemoinformatics

Abstract

Designing a better molecule is just one aspect of computational research, but getting it synthesized for biological evaluation is the most significant component in a drug discovery program. A molecule can be formed by a number of synthetic routes. Manually keeping track of all the available options for a product formation in various reaction conditions is a herculean task. Chemoinformatics comes to the rescue by providing a number of computational tools for reaction modelling, albeit less in number than structure property prediction software. The current computational tools help us in modelling various aspects of a given organic reaction—synthetic feasibility, synthesis planning, transition state prediction, the kinetic and thermodynamic parameters, and finally mechanistic features. Several methods like empirical, semiempirical, quantum mechanical, quantum chemical, machine learning, etc. have been developed to model a reaction. The computational approaches are based on the concept of rational synthesis planning, retro-synthetic approaches, and logic in organic synthesis. In this chapter, we begin with reaction representation in computers, reaction databases, free and commercial reaction prediction programs, followed by reaction searching methods based on ontologies and reaction fingerprints. The commonly employed quantum mechanics (QM) and quantum chemistry (QC)-based methods for intrinsic reaction coordinate (IRC) and transition state (TS) determination using the B3LYP/6–31G* scheme are described using simple name reactions. Most of the computational reaction prediction programs such as CHAOS/CAOS are based on the identification of the strategic bonds which are likely to be cleaved or formed during a certain chemical transformation. Accordingly, an algorithm has been developed to identify more than 300 types of unique bonds occurring in chemical reactions. The effect of implicit hydrogens on chemical reactivity modelling is discussed in the context of bioactivity spectrum for structure–activity relationship studies. Other parameters affecting reactivity such as solvent polarity, thermodynamics etc. are also briefly highlighted for frequently used name reactions, hazardous high-energy reactions, as well as industrially important reactions involving bulk chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knowles JR (1980) Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 49:877–919

    Article  CAS  Google Scholar 

  2. Rich PR (2003) The molecular machinery of Keilin’s respiratory chain. Biochem Soc Trans 31(6):1095–1105

    Article  CAS  Google Scholar 

  3. McMurry J, Begley TP (2005) The organic chemistry of biological pathways. In: Lehninger (ed) Principles of biochemistry. Roberts and Company Englewood, Colo

    Google Scholar 

  4. Sorensen SD, Nicole O, Peavy RD, Montoya LM, Lee CJ, Murphy TJ, Traynelis SF, Hepler JR (2003) Common signaling pathways link activation of murine PAR-1, LPA, and S1P receptors to proliferation of astrocytes. Mol Pharmacol 64(5):1199–1209

    Article  CAS  Google Scholar 

  5. Li Y, Agarwal PA (2009) Pathway-based view of human diseases and disease relationships. PLoS One 4(2):e4346

    Article  Google Scholar 

  6. http://www.biocarta.com/genes/catMetabolism.asp. Accessed 17 Oct 2012

  7. Timberlake KC (2009) General, organic, and biological chemistry: structures of life, 3rd edn. Prentice Hall

    Google Scholar 

  8. Bersohn M, Esack A (1977) A computer representation of synthetic organic reactions. Comput Chem 1(2):103–107

    Article  CAS  Google Scholar 

  9. Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G ChemInformA: the Diels–Alder reaction in total synthesis. Cheminform 33(36).

    Google Scholar 

  10. Yilmazer ND, Korth M (2013) Comparison of molecular mechanics, semi-empirical quantum mechanical, and density functional theory methods for scoring protein ligand interactions. J Phys Chem B 117(27):8075–8084

    Google Scholar 

  11. Ferguson DM, Gould IR, Glauser WA, Schroeder S, Kollman PA (1992) Comparison of ab initio, semiempirical, and molecular mechanics calculations for the conformational analysis of ring systems. J Comput Chem 13(4):525–532

    Article  CAS  Google Scholar 

  12. Nagaoka M, Okuno Y, Yamabe T (1991) The chemical reaction molecular dynamics method and the dynamic transition state: proton transfer reaction in formamidine and water solvent system. J Am Chem Soc 113(3):769–778

    Article  CAS  Google Scholar 

  13. Myrvold WC Statistical mechanics and thermodynamics: a Maxwellian view. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42(4):237–243

    Google Scholar 

  14. Amara P, Field MJ (2002) Combined quantum mechanical and molecular mechanical potentials. Encyclopedia of computational chemistry. Wiley

    Google Scholar 

  15. Singh UC, Kollman PA (1986) A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the CH3Cl+ Cl− exchange reaction and gas phase protonation of polyethers. J Comput Chem 7(6):718–730

    Article  CAS  Google Scholar 

  16. Crehuet R (2005) The reaction path intrinsic reaction coordinate method and the Hamilton Jacobi theory. J Chem Phys 122:234105

    Article  Google Scholar 

  17. van der Kamp MW, Mulholland AJ Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 52(16):2708–2728

    Google Scholar 

  18. Hao HL, Zhenyu MP, Jerry KB, Weitao Y (2008) Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface. J Chem Phys 128(3):034105

    Article  Google Scholar 

  19. Kirchner B, Vrabec J, Jaramillo-Botero A, Nielsen R, Abrol R, Su J, Pascal T, Mueller J, Goddard W III First-principles-based multiscale, multiparadigm molecular mechanics and dynamics methods for describing complex chemical processes. Multiscale molecular methods in applied chemistry. Springer Berlin Heidelberg, pp 1–42.

    Google Scholar 

  20. Moreland DW, Dauben WG (1985) Transition-state modeling in acyclic stereoselection. A molecular mechanics model for the kinetic formation of lithium enolates. J Am Chem Soc 107(8):2264–2273

    Article  CAS  Google Scholar 

  21. Schwartz SG, Henkelman GS, Jahannesson JH (2002) Methods for finding saddle points and minimum energy paths. Theoretical methods in condensed phase chemistry. Springer, Netherlands, pp 269–302

    Google Scholar 

  22. Wang Z. Barton-Kellogg Olefination. Comprehensive organic name reactions and reagents. Wiley

    Google Scholar 

  23. Bernardi AA, Capelli M, Gennari C, Goodman JM, Paterson I (1990) Transition-state modeling of the aldol reaction of boron enolates: a force field approach. J Org Chem 55(11):3576–3581

    Article  CAS  Google Scholar 

  24. Jones M, Fleming S (2010) "Organic Chemistry", Norton, 4th edn. Chapter 19, p 932–946, 965–985.

    Google Scholar 

  25. Berson J, Jones M (1964) 86, 5019

    Google Scholar 

  26. http://www.organic-chemistry.org/namedreactions/claisen-condensation.shtm. Accessed 17 Oct 2012

  27. Puy CHDe (1960) Chem Rev 60:444

    Google Scholar 

  28. Hughes P (2006) Was Markovnikov’s rule an inspired guess?. J Chem Educ 83(8):1152

    Article  CAS  Google Scholar 

  29. Gaussian 03, Revision C.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian Inc., Wallingford CT (2004)

    Google Scholar 

  30. Jaguar, version 7.9 (2012) Schrödinger, LLC, New York, NY

    Google Scholar 

  31. Spartan’10 Wavefunction, Inc.Irvine, CA

    Google Scholar 

  32. http://www.daylight.com/dayhtml/doc/theory/theory.smirks.html. Accessed 17 Oct 2012

  33. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html. Accessed 17 Oct 2012

  34. Christ CD, Zentgraf M, Kriegl JM (2012) Mining electronic laboratory notebooks: analysis, retrosynthesis, and reaction based enumeration. J Chem Inf Model 52(7):1745–1756

    Google Scholar 

  35. Goodman JM RInChIs and reactions abstracts of papers, 242nd ACS National Meeting & Exposition, Denver, CO, United States, August 28–September 1, 2011 (2011), CINF–40

    Google Scholar 

  36. http://www-rinchi.ch.cam.ac.uk/

  37. Holliday GL, Murray-Rust P, Rzepa HS (2006) Chemical markup, XML, and the world wide web. 6. CMLReact, an XML vocabulary for chemical reactions. J Chem Inf Model 46(1):145–157

    Article  CAS  Google Scholar 

  38. Hendrickson JB (2010) Systematic signatures for organic reactions. J Chem Inf Model 50(8):1319–1329

    Article  CAS  Google Scholar 

  39. Neches R, Fikes RE, Finin T, Gruber TR, Patil R, Senator T, Swartout WR (1991) Enabling technology for knowledge sharing. AI Magazine 12(3):16–36

    Google Scholar 

  40. Sankar P, Aghila G (2006) Design and development of Chemical ontologies for reaction representation. J Chem Inf Model 46:2355–2368

    Article  CAS  Google Scholar 

  41. Sankar P, Aghila G (2007) Ontology aided modeling of organic reaction mechanisms with flexible and fragment based XML markup procedures. J Chem Inf Model 47:1747–1762

    Article  CAS  Google Scholar 

  42. Fernandez-Lopez M, Gomez-Perez A, Pazos-Sierra J (1999) Building a 43. Chemical ontology using methontology and the ontology development environment. IEEE Intell Syst 14(1):37–46

    Article  Google Scholar 

  43. http://www.w3.org/XML. Accessed 1 Oct 2013

  44. http://www.w3.org/2007/OWL/wiki/OWLWorkingGroup. Accessed 1 Oct 2013

  45. Feldman HJ, Dumontier M, Ling S, Haider N, Hogue CWV (2005) CO: a chemical ontology for identification of functional groups and semantic comparison of small molecules. FEBS Lett 579:4685–4691

    Article  CAS  Google Scholar 

  46. Sankar P, Krief A, Vijayasarathi D (2013) A conceptual basis to encode and detect organic functional groups in XML. J Mol Graph Model 43:1–10

    Google Scholar 

  47. http://www.chemaxon.com/jchem/doc/user/fingerprint.html. Accessed 17 Oct 2013

  48. www.moltable.org. Accessed 17 Oct 2013

  49. https://scifinder.cas.org/scifinder/view/scifinder/scifinderExplore.jsf. Accessed 17 Oct 2012

  50. Jochum C (1994) The Beilstein information system is not a reaction database, or is it? J Chem Inf Comput Sci 34:11–13

    Article  Google Scholar 

  51. Blake JE, Dana RC (1990) CASREACT: more than a million reactions. J Chem Inf Comput Sci 30:394–399

    Article  CAS  Google Scholar 

  52. ChemInform (2010) 41(01)

    Google Scholar 

  53. http://chemreact.cambridgesoft.com/chemreact68/index.asp. Accessed 17 Oct 2013

  54. http://www.organicworldwide.net/content/reaction-databases. Accessed 17 Oct 2012

  55. http://www.molecular-networks.com/databases/biopath. Accessed 17 Oct 2013

  56. http://www.chemaxon.com/jchem/doc/user/reactor.html. Accessed 17 Oct 2013

  57. Bode JW (2004) Computer software reviews. J Am Chem Soc 126(46):15317–15317

    Article  CAS  Google Scholar 

  58. http://www.chemaxon.com/jchem/doc/user/chemaxon_reaction_library.html. Accessed 17 Oct 2013

  59. Wipke WT, Ouchi GI, Krishnan S (1978) Simulation and evaluation of chemical synthesis: an application of artificial intelligence techniques. Artif Intell 11(12):173–193

    Article  Google Scholar 

  60. Cheng H, Scott K (2003) An empirical model approach to gas evolution reactions in a centrifugal field. J Electroanal Chem 544:75–85

    Article  CAS  Google Scholar 

  61. Friesner RA (2005) Ab initio quantum chemistry methodology and applications. PNAs 102:6648–6653

    Article  CAS  Google Scholar 

  62. Mulholland A (2007) Chemical accuracy in QM/MM calculations on enzyme-catalyzed reactions. Chem Cent J 1:1–5

    Article  Google Scholar 

  63. Warren S, Wyatt P (2008) Organic synthesis: the disconnection approach, 2nd edn. Wiley

    Google Scholar 

  64. Thiel W Semiempirical quantum-chemical methods. Wiley interdisciplinary reviews: computational molecular science

    Google Scholar 

  65. Siddiqui KA, Tiekink ERT (2013) A supramolecular synthon approach to aid the discovery of architectures sustained by C-H…M hydrogen bonds. Chemical Communications

    Google Scholar 

  66. Matyska L, Koca J (1991) MAPOS: a computer program for organic synthesis design based on synthon model of organic chemistry. J Chem Inf Comput Sci 31(3):380–386

    Article  CAS  Google Scholar 

  67. http://ivan.tubert.org/caos/caos.html. Accessed 17 Oct 2012

  68. Gordeeva EV, Lushnikov DE, Zefirov NS (1990) COMPASS program: combination of empirical rules and combinatorial methods for planning of organic synthesis

    Google Scholar 

  69. Gillet V, Myatt G, Zsoldos Z, Johnson AP (1995) SPROUT, HIPPO and CAESA: tools for de novo structure generation and estimation of synthetic accessibility. Perspect Drug Discov 3(1):34–50

    Google Scholar 

  70. Socorro IM, Goodman JM (2006) The ROBIA program for predicting organic reactivity. J Chem Inf Model 46(2):606–614

    Article  CAS  Google Scholar 

  71. http://www.reaxys.com. Accessed 17 Oct 2013

  72. http://www.molecular-networks.com/products/sylvia. Accessed 17 Oct 2013

  73. Nicoletti C, Jain ML, Georgieva P, Azevedo SO (2009) Novel computational methods for modeling and control in chemical and biochemical process systems. In computational intelligence techniques for bioprocess modeling, supervision and control. Springer, Berlin Heidelberg, pp 99–125

    Google Scholar 

  74. Serratosa F, Xicart J (1995) Organic chemistry in action, 2nd edn. Elsevier.

    Google Scholar 

  75. Siegbahn PE, Borowski T (2006) Modeling enzymatic reactions involving transition metals. Acc Chem Res 39(10):729–738

    Article  CAS  Google Scholar 

  76. Zhou S, Yung Chan S, Cher Goh B, Chan E, Duan W, Huang M, McLeod HL (2005) Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet 44(3):279–304

    Article  CAS  Google Scholar 

  77. Cooper GM (2000) The cell: a molecular approach. Sinauer Associate, Sunderland

    Google Scholar 

  78. Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 57(10):1451–1470

    Article  CAS  Google Scholar 

  79. Karaman R, Fattash B, Qtait A (2013) The future of prodrugs—design by quantum mechanics methods. Expert Opin Drug Deliv 10(5):713–729

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthukumarasamy Karthikeyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Karthikeyan, M., Vyas, R. (2014). Representation, Fingerprinting, and Modelling of Chemical Reactions. In: Practical Chemoinformatics. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1780-0_6

Download citation

Publish with us

Policies and ethics