Skip to main content

Active Site-Directed Pose Prediction Programs for Efficient Filtering of Molecules

  • Chapter
  • First Online:
  • 2175 Accesses

Abstract

It is well known that the three-dimensional structure of a protein is a prerequisite in the field of structure-based drug discovery. Proteins are usually crystallized along with substrates (small molecules) and the site of binding is used for further computational study and virtual screening. Homology is a method that helps in modelling when a protein structure lacks co-crystallized ligands and requires knowledge of the binding site or the sequences which are yet to be crystallized, that require some structural understanding to correlate with biological functions. Homology modelling and active site prediction steps are discussed in detail using standard state-of-the-art software. Knowing the exact sites on a particular protein structure where other molecules can bind and interact is of paramount importance for any drug design effort. Having learnt the basic elements of docking, in this chapter we probe further into the binding sites and the specific properties that impart them the capability of getting bound by ligands. Active site-based features like topology, shape volume and amino acid composition all contribute to its preference for binding to a particular ligand molecule. Deducing this knowledge is the crux of an efficient active site-based screening of molecules. Active site information also helps in building a receptor-based pharmacophore query which can be applied as a constraint while screening molecular libraries. The later section therefore highlights some efforts towards active site-based virtual screening of molecules using an internally developed program which computes phi–psi-based fingerprints of proteins and binary fingerprints of ligands as a pre-filtering step for docking.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dai T, Liu Q, Gao J, Cao Z, Zhu R (2011) A new protein-ligand binding sites prediction method based on the integration of protein sequence conservation information. BMC Bioinformatics, 12(Suppl 14):9

    Article  Google Scholar 

  2. Jain T, Jayaram B (2005) An all atom energy based computational protocol for predicting binding affinities of protein–ligand complexes. FEBS Lett 579:6659–6666

    Article  CAS  Google Scholar 

  3. Wass MN, Sternberg MJE (2009) Prediction of ligand binding sites using homologous structures and conservation at CASP8. Proteins 77(Suppl 9):147–151

    Article  CAS  Google Scholar 

  4. Henschel A, Winter C, Kim WK, Schroeder M (2007) Using structural motif descriptors for sequence-based binding site prediction. BMC Bioinforma 8(Suppl 4):5

    Article  Google Scholar 

  5. Schmidt MR, Stansfeld PJ, Tucker SJ, Sansom MS (2013) Simulation-based prediction of phosphatidylinositol 4,5-bisphosphate binding to an ion channel. Biochemistry 52(2):279–281

    Article  CAS  Google Scholar 

  6. Wang X, Mi G, Wang C, Zhang Y, Li J, Guo Y, Pu X, Li M (2012) Prediction of flavin mono-nucleotide binding sites using modified PSSM profile and ensemble support vector machine. Comput Biol Med 42(11):1053–1059

    Article  CAS  Google Scholar 

  7. Hendlich M, Rippmann F, Barnickel G (1997) LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 15(6):359–363

    Article  CAS  Google Scholar 

  8. http://www.modelling.leeds.ac.uk/pocketfinder/help.html

  9. Brylinski M, Skolnick J (2008) A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation. Proc Natl Acad Sci 105:129–134

    Article  CAS  Google Scholar 

  10. http://sts.bioengr.uic.edu/castp/

  11. http://www.schrodinger.com/

  12. http://www.chemcomp.com/

  13. http://accelrys.com/products/discovery-studio/structure-based-design.html

  14. Bitetti-Putzer R, Joseph-McCarthy D, Hogle JM, Karplus M (2001) Functional group placement in protein binding sites: a comparison of GRID and MCSS. Comput Aided Mol Des 15(10):935–960

    Article  CAS  Google Scholar 

  15. Laurie ATR, Jackson RM (2006) Methods for the prediction of protein-ligand binding sites for structure-based drug design and virtual ligand screening. Curr Protein Pept Sci 7(5):395–406

    Article  CAS  Google Scholar 

  16. Zhang Z, Li Y, Lin B, Schroeder M, Huang B (2011) Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics 27(15):2083–2088

    Article  CAS  Google Scholar 

  17. http://www.modelling.leeds.ac.uk/qsitefinder/

  18. Laurie ATR, Jackso RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein–ligand binding sites. Structural bioinformatics 21(9):1908–1916

    Article  CAS  Google Scholar 

  19. http://jmol.sourceforge.net/

  20. Krieger E, Nabuurs SB, Vriend G (2003) Homology modeling In: Bourne PE, Weissig H (eds) Structural Bioinformatics. Wiley, Liss, pp 507–521

    Google Scholar 

  21. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  CAS  Google Scholar 

  22. Parulekar RS, Barage SH, Jalkute CB, Dhanavade MJ, Fandilolu PM, Sonawane KD (2013) Homology modeling, molecular docking and DNA binding studies of nucleotide excision repair uvrc protein from M. tuberculosis. Protein 32(6):467–476

    Article  CAS  Google Scholar 

  23. Cashman DJ, Ortega DR, Zhulin IB, Baudry J (2013) Homology modeling of the CheW coupling protein of the chemotaxis signaling complex. PLoS One 8(8):e70705

    Article  CAS  Google Scholar 

  24. Pang C, Cao T, Li J, Jia M, Zhang S, Ren S, An H, Zhan Y (2013) Combining fragment homology modeling with molecular dynamics aims at prediction of Ca2+ binding sites in CaBPs. J Comput Aided Mol Des (in press)

    Google Scholar 

  25. Wang P, Zhu BT (2013) Usefulness of molecular modeling approach in characterizing the ligand-binding sites of proteins: experience with human PDI, PDIp and COX. Curr Med Chem (in press)

    Google Scholar 

  26. Holtje H-D, Sippl W, Rognan D, G Folkers (2008) Molecular modeling. Wiley, Weinheim

    Google Scholar 

  27. Tramontano A (1998) Homology modeling with low sequence identity. Methods 14(3):293–300

    Article  CAS  Google Scholar 

  28. Brylinski M (2013) eVolver: an optimization engine for evolving protein sequences to stabilize the respective structures. BMC Res Notes 6:303. doi:10.1186/1756-0500-6-303

    Article  CAS  Google Scholar 

  29. Zhang Y (2013) Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10. Proteins (in press)

    Google Scholar 

  30. Kihara D, Chen H, Yifeng D Yang YD (2009) Quality assessment of protein structure models. Curr Protein Pept Sci 10:216–228

    Article  CAS  Google Scholar 

  31. http://www.chemcomp.com/journal/provalid.htm

  32. http://www.ncbi.nlm.nih.gov/

  33. Eswar N, Marti-Renom MA, Webb B, Madhusudhan MS, Eramian D, Shen Pieper MU, Sali A (2006) Comparative protein structure modeling with MODELLER. In: Coligan JE, Dunn BM, Speicher DW, Wingfield PT (eds) Current protocols in bioinformatics. Wiley, New York

    Google Scholar 

  34. http://web.expasy.org/groups/swissprot/

  35. http://www.uniprot.org/

  36. http://www.ebi.ac.uk/thornton-srv/software/PROCHECK/

  37. http://swift.cmbi.ru.nl/servers/html/index.html

  38. http://nihserver.mbi.ucla.edu/SAVES/

  39. http://nihserver.mbi.ucla.edu/ERRATv2/

  40. http://nihserver.mbi.ucla.edu/Verify_3D/

  41. Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA (1998) Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998) Pure Appl Chem 70 (5):1129–1143

    Article  CAS  Google Scholar 

  42. Chen J, Lai L (2006) Pocket v.2: further developments on receptor-based pharmacophore modeling. J Chem Inf Model 46(6):2684–2691

    Article  CAS  Google Scholar 

  43. Deng J, Lee KW, Sanchez T, Cui M, Neamati N, Briggs JM (2005) Dynamic receptor-based pharmacophore model development and its application in designing novel HIV-1 integrase inhibitors. J Med Chem 48(5):1496–1505

    Article  CAS  Google Scholar 

  44. Ebalunode JO, Dong X, Ouyang Z, Liang J, Eckenhoff RG, Zheng W (2009) Structure-based shape pharmacophore modeling for the discovery of novel anaesthetic compounds. Bioorganic Med Chem 49(10):2333–2343

    Google Scholar 

  45. Dror O, Schneidman-Duhovny D, Inbar DY, Nussinov R, Wolfson HJ (2002) A novel approach for efficient pharmacophore-based virtual screening: method and applications. J Mol Biol 324:105–121

    Article  Google Scholar 

  46. Bartlett GJ, Porter CT, Borkakoti N, Thornton JM (2002) Analysis of catalytic residues in enzyme active sites. J Mol Biol 324(1):105–121

    Article  CAS  Google Scholar 

  47. Cuneo MJ, Beese LS, Hellinga HW (2008) Ligand-induced conformational changes in a thermophilic ribose-binding protein. BMC Struct Biol 8:50

    Article  Google Scholar 

  48. Gliubich F, Gazerro M, Zanotti G, Delbono S, Bombieri G, Berni R (1996) Active site structural features for chemically modified forms of rhodanese. J Biol Chem 271(35):21054–21061

    Article  CAS  Google Scholar 

  49. Li S, Hall MB (2001) Modeling the active sites of metalloenzymes. 4. predictions of the unready states of [NiFe] desulfovibrio gigas hydrogenase from density functional theory. Inorg Chem 40(1):18–24

    Article  CAS  Google Scholar 

  50. Kumar A, Chaturvedi V, Bhatnagar S, Sinha S, Siddiqi MI (2009) Knowledge based identification of potent anti-tubercular compounds using structure based virtual screening and structure interaction fingerprints. J Chem Inf Model 49(1):35–42

    Article  CAS  Google Scholar 

  51. Desaphy J, Azdimousa K, Kellenberger E, Rognan D (2012) Comparison and druggability prediction of protein-ligand binding sites from pharmacophore-annotated cavity shapes. J Chem Inf Model 52(8):2287–2299

    Article  CAS  Google Scholar 

  52. Zhang N, Li B-Q, Gao S, Ruan J-S, Cai Y-D (2012) Computational prediction and analysis of protein [gamma]-carboxylation sites based on a random forest method. Mol Bio Syst 8:2946–2955

    CAS  Google Scholar 

  53. Somarowthu S et al (2011) High-performance prediction of functional residues in proteins with machine learning and computed input features. Biopolymers 95:390–400

    Article  CAS  Google Scholar 

  54. Ewing TJA, Kuntz ID (1997) Critical evaluation of search algorithms for automated molecular docking and database screening. J Comp Chem 18:1175–1189

    Article  CAS  Google Scholar 

  55. Marx D, Hutter J (2000) Ab initio molecular dynamics: theory and Implementation In: Grotendorst J (ed.) Modern methods and algorithms of quantum chemistry. John von Neumann Institute for Computing, Jülich, pp 301–449

    Google Scholar 

  56. http://www.rcsb.org/pdb/home/home.do

  57. http://cheminfo.u-strasbg.fr:8080/scPDB/2012/db_search/acceuil.jsp?uid=5563865723544052736

  58. http://scop.mrc-lmb.cam.ac.uk/scop/

  59. http://www.nvidia.com/object/tesla-supercomputing-solutions.html

  60. Meslamani J, Rognan D, Kellenberger E (2011) sc-PDB: a database for identifying variations and multiplicity of ‘druggable’ binding sites in proteins. Bioinformatics 27(9):1324–1326

    Article  CAS  Google Scholar 

  61. Unpublished results

    Google Scholar 

  62. Wenying Y, Hui X, Jiayuh L, Chenglong L (2013) Discovery of Novel STAT3 small molecule inhibitors via in silico site-directed fragment-based drug design. J Med Chem 56(11):4402–4412

    Article  Google Scholar 

  63. Putta S, Lemmen C, Beroza P, Greene J (2002) A novel shape-feature based approach to virtual library screening. J Chem Information Comp Sci 42(5):1230–1240

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthukumarasamy Karthikeyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Karthikeyan, M., Vyas, R. (2014). Active Site-Directed Pose Prediction Programs for Efficient Filtering of Molecules. In: Practical Chemoinformatics. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1780-0_5

Download citation

Publish with us

Policies and ethics