Docking and Pharmacophore Modelling for Virtual Screening

Chapter

Abstract

Protein and ligand molecules as two separate entities appear and behave differently, but what happens when they come together and interact with each other is one of the interesting facts in modern molecular biology and molecular recognition. This interaction can be well explained with the concept of docking which in a simple way can be described as the study of how a molecule can bind to another molecule to result in a stable entity. The two binding molecules can be either a protein and a ligand or a protein and a protein. Irrespective of which two molecules are interacting, a docking process invariably includes two steps—conformational search through various algorithms and scoring or ranking. Even though prolific research has been carried out in this field, yet it is still a topic of current interest as there is a scope for improvement to rationalize binding interactions with biological function using docking program. This chapter focuses on how to set up and perform docking runs using freeware and commercial software. Most of the known docking protocols like induced fit docking, protein–protein docking, and pharmacophore-based docking have been discussed. The use of pharmacophore queries as filters in virtual screening is also demonstrated using suitable examples.

Keywords

Docking Conformation Structure-based drug design Pharmacophore 

References

  1. 1.
    Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J Comput-Aided Mol Des 16:151–166CrossRefGoogle Scholar
  2. 2.
    Li H, Gao Z, Kang L et al (2006) TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res 34:W219–W224. doi:10.1093/nar/gkl114CrossRefGoogle Scholar
  3. 3.
    Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47:409–443CrossRefGoogle Scholar
  4. 4.
    Bello M, Martínez-Archundia M, Correa-Basurto J (2013) Automated docking for novel drug discovery. Expert Opin Drug Discov 8:821–834CrossRefGoogle Scholar
  5. 5.
    Glide, version 5.8, Schrödinger, LLC, New York, NY, 2012Google Scholar
  6. 6.
  7. 7.
  8. 8.
  9. 9.
    Keith J, Ilari A, Savino C (2008) Protein structure determination by x-ray crystallography. In: Keith JM (ed) Bioinformatics, methods in molecular biology, vol 2. Humana Press, New York, pp 63–87Google Scholar
  10. 10.
    Schrödinger Suite (2012) Protein Preparation Wizard; Epik version 2.3, Schrödinger, LLC, New York, NY, 2012; Impact version 5.8, Schrödinger, LLC, New York, NY, 2012; Prime version 3.1, Schrödinger, LLC, New York, NY, 2012.Google Scholar
  11. 11.
    LigPrep, version 2.5, Schrödinger, LLC, New York, NY, 2012Google Scholar
  12. 12.
  13. 13.
    Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791CrossRefGoogle Scholar
  14. 14.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461Google Scholar
  15. 15.
    http://www.ebi.ac.uk/pdbsum/. Accessed 20 Oct 2013
  16. 16.
    The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC.Google Scholar
  17. 17.
    Bahm H-J (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61–78CrossRefGoogle Scholar
  18. 18.
    Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489CrossRefGoogle Scholar
  19. 19.
    Kramer B, Rarey M, Lengauer T (1999) Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins 37:228–241CrossRefGoogle Scholar
  20. 20.
    Barreca ML, Iraci N, De Luca L, Chimirri A (2009) Induced-fit docking approach provides insight into the binding mode and mechanism of action of HIV-1 Integrase Inhibitors. ChemMedChem 4:1446–1456CrossRefGoogle Scholar
  21. 21.
    Schrödinger Suite (2012) Induced fit docking protocol; Glide version 5.8, Schrödinger, LLC, New York, NY, 2012; Prime version 3.1, Schrödinger, LLC, New York, NY, 2012.Google Scholar
  22. 22.
    Clauben H, Buning C, Rarey M, Lengauer T (2001) FlexE: efficient molecular docking considering protein structure variations. J Mol Biol 308:377–395CrossRefGoogle Scholar
  23. 23.
    Hetenyi C, van der Spoel D (2002) Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sci 11:1729–1737CrossRefGoogle Scholar
  24. 24.
    Campbell SJ, Gold ND, Jackson RM, Westhead DR (2003) Ligand binding: functional site location, similarity and docking. Curr Opin Struct Biol 13:389–395CrossRefGoogle Scholar
  25. 25.
    Sutherland JJ, Nandigam RK, Erickson JA, Vieth M (2007) Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy. J Chem Inf Model 47:2293–2302CrossRefGoogle Scholar
  26. 26.
    Verdonk ML, Mortenson PN, Hall RJ et al (2008) Protein-ligand docking against non-native protein conformers. J Chem Inf Model 48:2214–2225CrossRefGoogle Scholar
  27. 27.
    Wu G, Robertson DH, Brooks CL 3rd, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm. J Comput Chem 24(13):1549–1562CrossRefGoogle Scholar
  28. 28.
    McGann M (2011) FRED pose prediction and virtual screening accuracy. J Chem Inf Model 51(3):578–596CrossRefGoogle Scholar
  29. 29.
    http://www.eyesopen.com/. Accessed 20 Oct 2013
  30. 30.
    Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci U S A 93:13–20CrossRefGoogle Scholar
  31. 31.
    Davis C, Harris HJ, Hu K et al (2012) In silico directed mutagenesis identifies the CD81/claudin-1 hepatitis C virus receptor interface. Cellular Microbiol 14:1892–1903CrossRefGoogle Scholar
  32. 32.
    Vincenzetti S, Pucciarelli S, Carpi FM et al (2013) Site directed mutagenesis as a tool to understand the catalytic mechanism of human cytidine deaminase. Protein Pept Lett 20:538–549CrossRefGoogle Scholar
  33. 33.
    Keskin O, Ma B, Rogale K et al (2005) Protein-protein interactions: organization, cooperativity and mapping in a bottom-up systems biology approach. Phys Biol 2:S24–S35CrossRefGoogle Scholar
  34. 34.
    Wendt MD (2012) Protein-Protein Interactions. doi:10.1007/978-3-642-28965-1Google Scholar
  35. 35.
    Villoutreix BO, Labbé CM, Lagorce D et al (2012) A leap into the chemical space of protein-protein interaction inhibitors. Curr Pharm Des 18:4648–4667CrossRefGoogle Scholar
  36. 36.
    Xenarios I, Rice DW, Salwinski L et al (2000) DIP: the database of interacting proteins. Nucleic Acids Res 28:289–291. doi:10.1093/nar/28.1.289CrossRefGoogle Scholar
  37. 37.
    Szklarczyk D, Franceschini A, Kuhn M et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568.CrossRefGoogle Scholar
  38. 38.
    Chatr-aryamontri A, Breitkreutz BJ, Heinicke S et al (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41:D816–D823. doi:10.1093/nar/gks1158CrossRefGoogle Scholar
  39. 39.
    http://string-db.org/. Accessed 20 Oct 2013
  40. 40.
    http://hexserver.loria.fr/. Accessed 20 Oct 2013
  41. 41.
    http://zdock.umassmed.edu/. Accessed 20 Oct 2013
  42. 42.
    Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52(1):80–87CrossRefGoogle Scholar
  43. 43.
    Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein protein docking. Nucleic Acids Res 34:W310–W314CrossRefGoogle Scholar
  44. 44.
  45. 45.
    http://cluspro.bu.edu/login.php. Accessed 20 Oct 2013
  46. 46.
    Matsuzaki Y, Uchikoga N, Ohue M et al (2013) MEGADOCK 3.0: a high-performance protein-protein interaction prediction software using hybrid parallel computing for petascale supercomputing environments. Source Code Biol Med 8:18. doi:10.1186/1751-0473-8-18CrossRefGoogle Scholar
  47. 47.
  48. 48.
    Kozakov D, Brenke R, Comeau SR, Vajda S (2006) PIPER: an FFT-based proteindocking program with pairwise potentials. Proteins 65:392–406CrossRefGoogle Scholar
  49. 49.
    Griffith R, Luu TTT, Garner J, Keller PA (2005) Combining structure-based drug design and pharmacophores. J Mol Graph Model 23:439–446.CrossRefGoogle Scholar
  50. 50.
    Shin WJ, Seon BL (2013) Recent advances in pharmacophore modeling and its application to anti-influenza drug discovery. Expert Opin Drug Discov 8:411–426CrossRefGoogle Scholar
  51. 51.
    Caporuscio F, Tafi A (2011) Pharmacophore modelling: a forty year old approach and its modern synergies. Curr Med Chem 18:2543–2553CrossRefGoogle Scholar
  52. 52.
    Hecker EA, Duraiswami C, Andrea TA, Diller DJ (2002) Use of catalyst pharmacophore models for screening of large combinatorial libraries. J Chem Inf Comput Sci 42(5):1204–1211CrossRefGoogle Scholar
  53. 53.
    Phase, version 3.4, Schrödinger, LLC, New York, NY, 2012Google Scholar
  54. 54.
    Coteron JM, Marco M, Esquivias J et al (2011) Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. J Med Chem 54:5540–5561. doi:10.1021/jm200592fCrossRefGoogle Scholar
  55. 55.
    ACD/ChemSketch, version 12, Advanced Chemistry Development, Inc., Toronto, ON, Canada, http://www.acdlabs.com, 2013
  56. 56.
    Mills N (2006) ChemDraw Ultra 10.0. J Am Chem Soc 128:13649–13650CrossRefGoogle Scholar
  57. 57.
    Chen IJ, Foloppe N (2008) Conformational sampling of druglike molecules with MOE and catalyst: implications for pharmacophore modeling and virtual screening. J Chem Inf Model 48:1773–1791. doi:10.1021/ci800130kCrossRefGoogle Scholar
  58. 58.
  59. 59.
  60. 60.
    Schneidman-Duhovny D, Dror O, Inbar Y et al (2008) PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Res 36:W223–W228. doi:10.1093/nar/gkn187CrossRefGoogle Scholar
  61. 61.
    Cavasotto CN, Orry AJW, Abagyan RA (2005) The challenge of considering receptor flexibility in ligand docking and virtual screening. Curr Comput Aided Drug Des 1:423–440CrossRefGoogle Scholar
  62. 62.
    Vajda S, Hall DR, Kozakov D (2013) Sampling and scoring: a marriage made in heaven. Proteins 81:1874–1884CrossRefGoogle Scholar
  63. 63.
    Seeliger D, Groot BL (2010) Conformational transitions upon ligand binding: holo structure prediction from Apo conformation. PLoS Comput Biol 6(1):e1000634CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Digital Information Resource CentreNational Chemical LaboratoryPuneIndia
  2. 2.Scientist (DST) Division of Chemical Engineering and Process DevelopmentNational Chemical LaboratoryPuneIndia

Personalised recommendations