Practical Chemoinformatics

pp 1-92


Open-Source Tools, Techniques, and Data in Chemoinformatics

  • Muthukumarasamy KarthikeyanAffiliated withDigital Information Resource Centre, National Chemical Laboratory Email author 
  • , Renu VyasAffiliated withScientist (DST) Division of Chemical Engineering and Process Development, National Chemical Laboratory

* Final gross prices may vary according to local VAT.

Get Access


Chemicals are everywhere and they are essentially composed of atoms and bonds that support life and provide comfort. The numerous combinations of these entities lead to the complexity and diversity in the universe. Chemistry is a subject which analyzes and tries to explain this complexity at the atomic level. Advancement in this subject led to more data generation and information explosion. Over a period of time, the observations were recorded in chemical documents that include journals, patents, and research reports. The vast amount of chemical literature covering more than two centuries demands the extensive use of information technology to manage it. Today, the chemoinformatics tools and methods have grown powerful enough to handle and discover unexplored knowledge from this huge resource of chemical information. The role of chemoinformatics is to add value to every bit of chemical data. The underlying theme of this domain is how to develop efficient chemical with predicted physico-chemical and biological properties for economic, social, health, safety, and environment. In this chapter, we begin with a brief definition and role of open-source tools in chemoinformatics and extend the discussion on the need for basic computer knowledge required to understand this specialized and interdisciplinary subject. This is followed by an in-depth analysis of traditional and advanced methods for handling chemical structures in computers which is an elementary but essential precursor for performing any chemoinformatics task. Practical guidance on step-by-step use of open-source, free, academic, and commercial structure representation tools is also provided. To gain a better understanding, it is highly recommended that the reader attempts the practice tutorials, Do it yourself exercises, and questions given in each chapter. The scope of this chapter is designed for experimental chemists, biologists, mathematicians, physicists, computer scientists, etc. to understand the subject in a practical way with relevant and easy-to-understand examples and also to encourage the readers to proceed further with advanced topics in the subsequent chapters.


Chemical structure Molecular modelling Chemical databases Open-source software Drug discovery