Applications of Genetic Algorithms in Cryptology

  • Ram Ratan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 258)


Cryptology deals with the design and analysis of secure communication and information management systems. Cryptography protects vital information from adversaries by the process of encryption and cryptanalysis provides adversaries information being communicated by exploiting cryptographic weaknesses. Cryptography is the key technology which is used in various information security applications to achieve security solutions such as confidentiality, authenticity, integrity, availability and non repudiation. Nature inspired computing applied successfully in various artificial intelligence and pattern recognition problems of various fields gives an inspiration to apply in cryptology. Evolutionary computing is being applied nowadays to achieve solutions of cryptographic and cryptanalytic problems. In this paper, we present brief on cryptosystem and overview on applications of genetic algorithms in cryptology. Findings show that the work on nature inspired computing in cryptology is minimal but the applications of genetic algorithms are increasing. The genetic algorithms are not only applied on less complex and classical ciphers but some block ciphers are also attempted for their solutions. Further insight research is needed to tackle various problems of modern cryptography using genetic or other evolutionary computing techniques.


Evolutionary computing Genetic algorithm Information security Cryptography Cryptanalysis Cryptosystem 


  1. 1.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)Google Scholar
  3. 3.
    Beker, H., Piper, F.: Cipher Systems: The Protection of Communications. Northwood Books, London (1982)Google Scholar
  4. 4.
    Stallings, W.: Cryptography and Network Security Principles and Practice. Prentice Hall, Boston (2011)Google Scholar
  5. 5.
    Gaines, H.F.: Cryptanalysis: a Study of Ciphers and Their Solution. Dover Publications, London (1956)Google Scholar
  6. 6.
    Bonissone, P.P., Chen, Y., Goebel, K., Khedkar, P.S.: Hybrid soft computing systems: industrial and commercial applications. Proc. IEEE 87(9), 1641–1667 (1999)CrossRefGoogle Scholar
  7. 7.
    Munakata, T.: Fundamentals of the New Artificial Intelligence: Beyond Traditional Paradigms. Springer, New York (1998)MATHGoogle Scholar
  8. 8.
    Deb, K.: Genetic algorithms in search and optimization: the technique and applications. In: Proceedings of International Workshop on Soft Computing and Intelligent Systems, Calcutta, India: Indian Statistical Institute, pp. 58–87 (1998)Google Scholar
  9. 9.
    Tomassini, M.: Evolutionary algorithms. In: Proceedings of International Workshop: Towards Evolvable Hardware, Springer LNCS 1062, (1996)Google Scholar
  10. 10.
    Clark, A., Dawson, E.: Optimization heuristics for the automated cryptanalysis of classical ciphers. JCMMCC 28, 63–86 (1998)MATHMathSciNetGoogle Scholar
  11. 11.
    Yang, X.-S., Deb, S.: Cuckoo search via levy flights. In: Nature Biologically Inspired Computing. NaBIC 2009. World Congress, pp. 210–214 (2009)Google Scholar
  12. 12.
    Ibrahim, S., Maarof, M.A.: A review on biological inspired computation in cryptology. (2005)
  13. 13.
    Rod, H.: Automated cryptanalysis of monoalphabetic substitution ciphers using stochastic optimization algorithms.
  14. 14.
    Uddin, M.F., Youssef, A.M.: Cryptanalysis of simple substitution ciphers using particle swarm optimization, evolutionary computation. In: CEC 2006, IEEE Congress on Evolutionary Comuting, pp. 677–680 (2006)Google Scholar
  15. 15.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Abdul Halim, M.F., Attea, B.A., Hammed, S.M.: A binary particle swarm optimization for attacking knapsacks cipher algorithm. In: ICCCE08 Conference, Malaysia, May (2008)Google Scholar
  17. 17.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addision- Wesley Pub.Co., Boston (1989)Google Scholar
  18. 18.
    Spillman, R., Janssen, M., Nelson, B., Kepner, N.: Use of genetic algorithm in cryptanalysis of simple substituion cipher. Cryptologia 17(4), 367–377 (1993)CrossRefMATHGoogle Scholar
  19. 19.
    Forsyth, W.S., Safavi-Naini, R.: Automated cryptanalysis of substitution ciphers. Cryptologia 17(4), 407–418 (1993)CrossRefMATHGoogle Scholar
  20. 20.
    Thomas, J.: A fast method for cryptanalysis of substitution ciphers. Cryptologia 19(3), 265–274 (1995)CrossRefMATHGoogle Scholar
  21. 21.
    Faldt, E., Nilsson, S.: Solving simple substitution ciphers using genetic programming. (2001)
  22. 22.
    Verma, A.K., Mayank, D., Joshi, R.C.: Genetic algorithm and tabu search attack on the mono-alphabetic substitution cipher in adhoc networks. J. Comput. Sci. 3, 134–137 (2007)CrossRefGoogle Scholar
  23. 23.
    Omran, S.S., Al-Khalid, A.S., Al-Saady, D.M.: Using genetic algorithm to break a monoalphabetic substitution cipher. In: Proceedings of IEEE Conference on Open Systems (ICOS 2010), pp. 63–67 (2010)Google Scholar
  24. 24.
    Matthews, R.A.J.: The use of genetic algorithms in cryptanalysis. J. Cryptologia 17(2), 187–201 (1993)CrossRefGoogle Scholar
  25. 25.
    Al-Khalid, A.S., Omran, S.S., Hammod, D.A.: Using genetic algorithms to break a simple transposition cipher. In: 6th International Conference on Information Technology ICIT 2013 (2013)Google Scholar
  26. 26.
    Bagnall, A. J.: The applications of genetic algorithms in cryptanalysis. School of Information Systems, University Of East Anglia (1996)Google Scholar
  27. 27.
    Dimovski, A., Gligoroski, D.: Attacks on the transposition ciphers using optimization heuristics. In Proceedings of ICEST 2003, Oct 2003Google Scholar
  28. 28.
    Garg, P.: Genetic algorithms, tabu search and simulated annealing: a comparison between three approaches for cryptanalysis of transposition cipher. J. Theor Appl. Inf. Technol. 5(4):387–392 (2009) Google Scholar
  29. 29.
    Heydari, M., Shabgahi, G.L., Heydari, M.M.: Cryptanalysis of transposition ciphers with long key lengths using an improved genetic algorithm. World Appl. Sci. J. 21(8), 1194–1199 (2013)Google Scholar
  30. 30.
    Clark, A.: Optimization heuristics for cryptology. Ph.D. Dissertation, Faculty of Information Technology, Queensland University of Technology, Australia (1998)Google Scholar
  31. 31.
    Negara, G.: An evolutionary approach for the playfair cipher cryptanalysis. (2012)
  32. 32.
    Ragheb, T., Subbanagounder, A.: Applying genetic algorithms for searching key-space of polyalphabetic substitution ciphers. Int. Arab J. Inf. Technol. 5(1), 87–91 (2008)Google Scholar
  33. 33.
    Clark, A., Dawson, E.: A parallel genetic algorithm for cryptanalysis of the polyalphabetic substitution cipher. Cryptologia 21(2), 129–138 (1997)CrossRefGoogle Scholar
  34. 34.
    Dimovski, A., Gligoroski, D.: Attack on the Polyalphabetic substitution cipher using a parellel genetic algorithm. Technical Report, Swiss-Macedonian Scientific Cooperation through SCOPES Project, Ohrid (2003)Google Scholar
  35. 35.
    Bagnall, A.J., Mckeown, G.P., Rayward-smith, V.J.: The cryptanalysis of a three rotor machine using a genetic algorithm. In Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA97), Morgan Kaufmann (1997)Google Scholar
  36. 36.
    Morelli, R.A., Walde, R.E.: A word-based genetic algorithm for cryptanalysis of short cryptograms. In Proceedings of the 2003 Florida Artificial Intelligence Research Symposium (FLAIRS—2003), pp. 229–233 (2003)Google Scholar
  37. 37.
    Morelli, R.A., Walde, R.E., Servos, W.: A study of heuristic search algorithms for breaking short cryptograms. Int. J. Artif. Intell. Tools (IJAIT) 13(1), 45–64 (2004) (World Scientific Publishing Company)Google Scholar
  38. 38.
    Servos, W.: Using genetic algorithm to break Alberti cipher. J. Comput. Sci. Coll. 19(5), 294–295 (2004)Google Scholar
  39. 39.
    Spillman, R.: Cryptanalysis of knapsack ciphers using genetic algorithms. Cryptologia 17(4), 367–377 (1993)CrossRefMATHGoogle Scholar
  40. 40.
    Al-Dabbagh, R.D.H.: Compact genetic algorithm for cryptanalysis of trapdoor 0–1 knapsack cipher. J. Al-Nahrain Univ. 12(2), 137–145 (2009)Google Scholar
  41. 41.
    Ali, H., Al-Salami, M.: Timing attack prospect for RSA cryptanalysis using genetic algorithm technique. Int. Arab J. Inf. Technol. 1(1), 17–27 (2004)Google Scholar
  42. 42.
    Albaassal, A.M.B., Wahdan, A.-M.A.: Genetic algorithm cryptanalysis of the basic substitution permutation network. In: Proceedings of the IEEE Midwest Symposium on Circuits and Systems, pp. 471–415 (2003)Google Scholar
  43. 43.
    Joseph, A.B., Sheridan, H.: Genetic algorithm cryptanalysis of a substitution permutation network. In: IEEE Symposium on Computational Intelligence in Cyber Security, CICS ‘09, pp. 115–121 (2009)Google Scholar
  44. 44.
    Garg, P.: Genetic algorithm attack on simplified data encryption standard algorithm. Int. J. Res. Comput. Sci. ISSN1870-4069 (2006)Google Scholar
  45. 45.
    Sharma, L., Pathak, B.K., Sharma, R.: Breaking of simplified data encryption standard. Glob. J. Comput. Sci. Technol. 12(5) (2012) (Version 1.0)Google Scholar
  46. 46.
    Song, J., Zhang, H., Meng, Q. and Wang, Z.: Cryptanalysis of four-round DES based on genetic algorithms. In: Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing, vol. 4683, pp. 583–590, Springer-Verlag, LNCS (2007)Google Scholar
  47. 47.
    Sathya, S., Chitralekha, S.T., Ananda Kumar, P.: Normadic genetic algorithm for cryptanalysis of DES 16. Int. J. Comput. Theor. Eng. 2(3), 411–415 (2010)Google Scholar
  48. 48.
    Albaasal, A.M.B., Wahdan, A.-M.A.: Genetic algorithm cryptanalysis of a feistel type block cipher. In: Proceedings of Electrical, Electronic and Computer Engineering Conference, 217–221 (2004)Google Scholar
  49. 49.
    Hu, W.: Cryptanalysis of TEA using quantum-inspired genetic algorithms. J. Softw. Eng. Appl. 3, 50–57 (2010)CrossRefGoogle Scholar
  50. 50.
    Millan, W., Clark, A., Dawson, E.: Smart hill climbing finds better boolean functions. In: Proceedings of. 4th Annual Workshop on Selected Areas in Cryptography, SAC 1997, 11–12 Aug 1997Google Scholar
  51. 51.
    Millan, W., Clark, A., Dawson, E.: Heuristic design of cryptographically strong balanced boolean functions. In: Advances in Cryptology—EUROCRYPT’98, LNCS 1403, pp. 489–499 (1998)Google Scholar
  52. 52.
    Dimovski, A., Gligoroski, D.: Generating highly nonlinear boolean functions using a genetic algorithm. In: Proceedings of 1st Balcan Conference on Informatics, Thessaloniki, Greece, Nov (2003)Google Scholar
  53. 53.
    Clark, J.A.: Metaheuristic search as cryptological tool. PhD Dissertation, Dept. Comput. Sci, University of York, UK (2000)Google Scholar
  54. 54.
    Tragha A., Omary F., Mouloudi A.: ICIGA: improved cryptography inspired by genetic algorithms. In Proceedings of the International Conference on Hybrid Information Technology (ICHIT’06), pp. 335–341 (2006)Google Scholar
  55. 55.
    Agarwal, A.: Secret key encryption algorithm using genetic algorithm. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2(4), 216–218 (2012)Google Scholar
  56. 56.
    Khan, F.U., Bhatia, S.: A novel approach to genetic algorithm based cryptography. Int. J. Res. Comput. Sci. 2(3), 7–10 (2012)CrossRefGoogle Scholar
  57. 57.
    Mishra, S., Bali, S.: Public key cryptography using genetic algorithm. International J Recent Technol. Eng. (IJRTE) 2(2), 150–154 (2013)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Scientific Analysis GroupDefence Research and Development OrganizationDelhiIndia

Personalised recommendations