Metaheuristic Approaches for Multiprocessor Scheduling

  • Lakshmi Kanth Munganda
  • Alok Singh
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 258)


In the multiprocessor scheduling problem, a given list of tasks has to be scheduled on identical parallel processors. Each task in the list is defined by a release date, a due date and a processing time. The objective is to minimize the number of processors used while respecting the constraints imposed by release dates and due dates. This objective is clearly linked with minimizing the cost of hardware needed for implementing a specific application. In this paper, we have proposed two metaheuristic approaches for this problem. The first approach is based on artificial bee colony algorithm, whereas the latter approach is based on invasive weed optimization algorithm. On the standard benchmark instances for the problem, performances of our approaches are comparable to other state-of-the-art approaches.


  1. 1.
    Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization. Inf. Sci. 192, 120–142 (2012)CrossRefGoogle Scholar
  2. 2.
    Basak, A., Maity, D., Das, S.: A differential invasive weed optimization algorithm for improved global numerical optimization. Appl. Math. Comput. 219(12), 6645–6668 (2013)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Basturk, B., Karaboga, D.: An artificial bee colony (ABC) algorithm for numeric function optimization. In: Proceeding of the IEEE Swarm Intelligence Symposium, pp. 12–14. IEEE, Indianapolis (2006)Google Scholar
  4. 4.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial systems. Oxford University Press, New York (1999)MATHGoogle Scholar
  5. 5.
    Gajski, D.D., Dutt, N.D., Wu, A.C.-H., Lin, S.Y.-L.: High level synthesis: Introduction to chip and system design. Academic Publishers, Boston (1992) Google Scholar
  6. 6.
    Gao, W., Liu, S.: Improved artificial bee colony algorithm for global optimization. Inform. Process. Lett. 111(17), 871–882 (2011)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Gao, W., Liu, S., Huang, L.: A global best artificial bee colony algorithm for global optimization. J. Comput. Appl. Math. 236(11), 2741–2753 (2012)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Lee, J.-H., Hsu, Y.-C., Lin, Y.-L.: A new integer linear programming formulation for the scheduling problem in data path synthesis. In: Proceedings of the 1989 IEEE International Conference on Computer-Aided Design, pp. 20–23. IEEE Computer Society Press, New York (1989)Google Scholar
  9. 9.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Erciyes University, Turkey (2005)Google Scholar
  10. 10.
    Karaboga, D., Akay, B.: A modified artificial bee colony (ABC) algorithm for constrained optimization problems. Appl. Soft Comput. 11, 3021–3031 (2011)CrossRefGoogle Scholar
  11. 11.
    Karaboga, D., Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Lecture notes in Artificial Intelligence, vol. 4529, pp. 789–798. Springer, Berlin (2007)Google Scholar
  12. 12.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numeric function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697 (2008)CrossRefGoogle Scholar
  14. 14.
    Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artincial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. (2012). (In Press) doi:  10.1007/s10462-012-9328-0
  15. 15.
    Kundu, D., Suresh, K., Ghosh, S., Das, S., Panigrahi, B.K., Das, S.: Multi-objective optimization with artificial weed colonies. Inf. Sci. 181(12), 2441–2454 (2011)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Mehrabian, A., Lucas, C.: A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 1(4), 355–366 (2006)Google Scholar
  17. 17.
    Pan, Q.K., Tasgetiren, M., Suganthan, P., Chua, T.: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inf. Sci. 181, 2455–2468 (2011)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Rossi, A., Sevaux, M.: Mixed-integer linear programming formulation for high level synthesis. In: Proceedings of the Eleventh International Workshop on Project Management and Scheduling, pp. 222–226. Istanbul, Turkey (2008)Google Scholar
  19. 19.
    Roy, G.G., Chakraborty, P., Zhao, S.Z., Das, S., Suganthan, P.N.: Artificial foraging weeds for global numerical optimization over continuous spaces. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)Google Scholar
  20. 20.
    Roy, S., Islam, S.M., Das, S., Ghosh, S.: Multimodal optimization by artificial weed colonies enhanced with localized group search optimizers. Appl. Soft Comput. 13(1), 27–46 (2013)CrossRefGoogle Scholar
  21. 21.
    Sevaux, M., Singh, A., Rossi, A.: Tabu search for multiprocessor scheduling: application to high level synthesis. Asia-Pac. J. Oper. Res. 28, 201–212 (2011)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Sevaux, M., Sorensen, K.: A tabu search method for high level synthesis. In: Proceedings of the Francoro V/Roadef, pp. 395–396. France (2007)Google Scholar
  23. 23.
    Singh, A.: An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem. Appl. Soft Comput. 9, 625–631 (2009)CrossRefGoogle Scholar
  24. 24.
    Singh, A., Sevaux, M., Rossi, A.: A hybrid grouping genetic algorithm for multiprocessor scheduling. In: Proceedings of the Second International Conference on Contemporary Computing, vol. 40, pp. 1–7. Springer, India (2009)Google Scholar
  25. 25.
    Sundar, S., Singh, A.: A swarm intelligence approach to the quadratic minimum spanning tree problem. Inf. Sci. 180, 3182–3191 (2010)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Sundar, S., Singh, A.: A swarm intelligence approach to the quadratic multiple knapsack problem. In: Lecture notes in Computer Science, vol. 6443, pp. 626–633. Springer, Berlin (2010)Google Scholar
  27. 27.
    Sundar, S., Singh, A.: A swarm intelligence approach to the early/tardy scheduling problem. Swarm Evol. Comput. 4, 25–32 (2012)CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.School of Computer and Information SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations