Searching Partially Bounded Regions with P Systems

  • Hepzibah A. Christinal
  • Ainhoa Berciano
  • Daniel Díaz-Pernil
  • Miguel A. Gutiérrez-Naranjo
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 258)


The problem of automatically marking the interior and exterior regions of a simple curve in a digital image becomes a hard task due to the noise and the intrinsic difficulties of the media where the image is taken. In this paper, we propose a definition of the interior of a partially bounded region and present a bio-inspired algorithm for finding it in the framework of Membrane Computing.


Partially bounded region Membrane Computing Tissue P system 



MAGN acknowledges the support of the project TIN2012-37434 of the Ministerio de Economa y Competitividad of Spain.


  1. 1.
    D’amico, G.: The commonest glomerulonephritis in the world: Iga nephropathy. QJM: Int. J. Med. 64(3), 709–727 (1987)Google Scholar
  2. 2.
    Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving the independent set problem by using tissue-like P systems with cell division. In: Mira, J. et al. (ed.) IWINAC (1). Lecture Notes in Computer Science, vol. 5601, pp. 213–222. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A linear time solution to the partition problem in a cellular tissue-like model. J. Comput. Theoret. Nanosci. 7(5, SI), 884–889 (2010)Google Scholar
  4. 4.
    Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Real, P., Sánchez-Canales, V.: Computing homology groups in binary 2D imagery by tissue-like P systems. Rom. J. Inform. Sci. Tech. 13(2), 141–152 (2010)Google Scholar
  5. 5.
    Feferman, S.: Mathematical intuition versus mathematical monsters. Synthese 125(3), 317–332 (2000)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Martìn-Vide, C., Pădun, G., Pazos, J., Rodrìguez-Patón, A.: Tissue P systems. Theoret. Comput. Sci. 296(2), 295–326 (2003)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Peña-Cantillana, F., Daz-Pernil, D., Berciano, A., Gutiérrez-Naranjo, M.A.: A parallel implementation of the thresholding problem by using tissue-like P systems. In: Real, P., et al. (ed.) CAIP (2). Lecture Notes in Computer Science, vol. 6855, pp. 277–284. Springer, Heidelberg (2011)Google Scholar
  8. 8.
    Peña-Cantillana, F., Daz-Pernil, D., Christinal, H.A., Gutiérrez-Naranjo, M.A.: Implementation on CUDA of the smoothing problem with tissue-like P systems. Int. J. Nat. Comput. Res. 2(3), 25–34 (2011)CrossRefGoogle Scholar
  9. 9.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  10. 10.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)MATHGoogle Scholar
  11. 11.
    Ross, F., Ross, W.T.: The Jordan curve theorem is non-trivial. J. Math. Arts 5, 213–219 (2011)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Hepzibah A. Christinal
    • 1
    • 3
  • Ainhoa Berciano
    • 1
    • 2
  • Daniel Díaz-Pernil
    • 1
  • Miguel A. Gutiérrez-Naranjo
    • 4
  1. 1.CATAM Research Group—Department of Applied Mathematics IUniversity of SevilleSevilleSpain
  2. 2.Departamento de Didáctica de la Matemática y de las Ciencias ExperimentalesUniversity of the Basque CountryDonostiaSpain
  3. 3.Karunya UniversityCoimbatoreIndia
  4. 4.Research Group on Natural Computing, Department of Computer Science and Artificial IntelligenceUniversity of SevillaSevillaSpain

Personalised recommendations