Differential Evolution for Supplier Selection Problem: A DEA Based Approach

  • Sunil Jauhar
  • Millie Pant
  • Aakash Deep
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 258)


Deciding an appropriate approach for supplier selection is however a demanding research task as there are often thousands of potential suppliers and identifying a subset of these suppliers can be a difficult practice. During last few years, Differential Evolution has come out as a dominant tool used for solving a wide range of problems arising in numerous fields. In the current study, we present an approach to solve the supplier selection problem mathematical modeled with Data envelopment analysis using differential evolution. A case study demonstrates the application of the present approach.


Supplier selection Supply chain management DE DEA 


  1. 1.
    Storn, R., Price, K.: Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Tech. Rep TR-95-012, Berkeley (1995)Google Scholar
  2. 2.
    Plagianakos, V., Tasoulis, D., Vrahatis, M.: A review of major application areas of differential evolution. In: Advances in Differential Evolution, vol. 143, pp. 197–238. Springer, Berlin (2008)Google Scholar
  3. 3.
    Wang, F., Jang, H.: Parameter estimation of a bio reaction model by hybrid differential evolution. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC-2000), pp. 410–417. San diego (2000)Google Scholar
  4. 4.
    Joshi, R., Sanderson, A.: Minimal representation multi sensor fusion using differential evolution. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 29(1), 63–76 (1999)Google Scholar
  5. 5.
    Ilonen, J., Kamarainen, J., Lampine, J.: Differential evolution training algorithm for feed-forward neural networks. Neural Process. Lett. 17(1), 93–105 (2003)CrossRefGoogle Scholar
  6. 6.
    Ali, M., Siarry, P., Pant, M.: An efficient differential evolution based algorithm for solving multi-objective optimization. Eur. J. Oper. Res. 217, 404–416 (2011)Google Scholar
  7. 7.
    Shirouyehzad, H., Lotfi, F.H., Dabestani, R.: A data envelopment analysis approach based on the service quality concept for vendor selection. Paper presented at the international conference on computers and industrial engineering (CIE 2009), pp. 426–430, 6–9 July 2009. doi: 10.1109/ICCIE.2009.5223823
  8. 8.
    Weber, C.A., Current, J.R., Benton, W.C.: Vendor selection criteria and methods. Eur. J. Oper. Res. 50(1), 2–18 (1991)CrossRefGoogle Scholar
  9. 9.
    Ghodsypour, S.H., O’Brien, C.: A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming. Int. J. Prod. Econ. 56–57, 199–212 (1998)CrossRefGoogle Scholar
  10. 10.
    Davidrajuh, R.: Modeling and implementation of supplier selection procedures for ecommerce initiatives. Ind. Manage. Data Syst. 103(1), 28–38 (2003)CrossRefGoogle Scholar
  11. 11.
    Huang, S.H., Uppal, M., Shi, J.: A product driven approach to manufacturing supply chain selection. Supply Chain Manage. Int. J. 7(3/4), 189–199 (2002)CrossRefGoogle Scholar
  12. 12.
    Fisher, M.L.: What is the right supply chain for your product? Harvard Bus. Rev. 75, 105–116 (1997)Google Scholar
  13. 13.
    Talluri, S., Narasimhan, R.: Vendor evaluation with performance variability: a max–min approach. Eur. J. Oper. Res. 146(3), 543–552 (2003)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Talluri, S., Narasimhan, R.: A note on ‘‘a methodology for supply base optimization”. IEEE Trans. Eng. Manage. 52(1), 130–139 (2005)CrossRefGoogle Scholar
  15. 15.
    Ng, W.L.: An efficient and simple model for multiple criteria supplier selection problem. Eur. J. Oper. Res. 186(3), 1059–1067 (2008)CrossRefMATHGoogle Scholar
  16. 16.
    Talluri, S.: A buyer–seller game model for selection and negotiation of purchasing bids. Eur. J. Oper. Res. 143(1), 171–180 (2002)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Hong, G.H., Park, S.C., Jang, D.S., Rho, H.M.: An effective supplier selection method for constructing a competitive supply-relationship. Expert Syst. Appl. 28(4), 629–639 (2005)CrossRefGoogle Scholar
  18. 18.
    Ghodsypour, S.H., O’Brien, C.: The total cost of logistics in supplier selection, under conditions of multiple sourcing, multiple criteria and capacity con- straints. Int. J. Prod. Econ. 73, 15–27 (2001)CrossRefGoogle Scholar
  19. 19.
    Dimitris, K.S., Lamprini, V.S., Yiannis, G.S.: Data envelopment analysis with nonlinear virtual inputs and outputs. Eur. J. Oper. Res. 202, 604–613 (2009)Google Scholar
  20. 20.
    Ramanathan, R.: An Introduction to Data Envelopment Analysis: A Tool for Performance Measurement. Sage Publication Ltd., New Delhi (2003)Google Scholar
  21. 21.
    Srinivas, T.: Data envelopment analysis: models and extensions. In: Production/Operation Management Decision Line, pp. 8–11 (2000)Google Scholar
  22. 22.
    Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6), 429–444 (1978)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Banker, R.D., Charnes, A., Cooper, W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30, 1078–1092 (1984)CrossRefMATHGoogle Scholar
  24. 24.
    Cooper, W.W., Seiford, L.M., Tone, K.: Data envelopment analysis. Springer, US (2007)MATHGoogle Scholar
  25. 25.
    Das, S., Abraham, A., Chakraborty, U., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553 (2009)CrossRefGoogle Scholar
  26. 26.
    Jouni, L.: A constraint handling approach for differential evolution algorithm. In: Proceeding of IEEE Congress on Evolutionary Computation (CEC 2002), pp. 1468–1473 (2002)Google Scholar
  27. 27.
    Coello, C.A.C.: Theoretical and numerical constraint handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191(11–12), 1245–1287 (2002) [Differential Evolution for Data Envelopment Analysis 319]Google Scholar
  28. 28.
    Ray, T., Kang, T., Chye, S.K.: An evolutionary algorithm for constraint optimization. In: Whitley D., Goldberg D., Cantu-Paz E., Spector L., Parmee I., Beyer H.G. (eds.) Proceeding of the Genetic and Evolutionary Computation Conference (GECCO 2000), pp. 771–777 (2000)Google Scholar
  29. 29.
    Kumar, P., Mogha, S.K., Pant, M.: Differential evolution for data envelopment analysis.In: Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011), 20-22 December 2011. doi:10.1007/978-81-322-0487-9_30 Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Indian Institute of TechnologyRoorkeeIndia
  2. 2.Jaypee University of Engineering and TechnologyGunaIndia

Personalised recommendations