RoHeMaSys: Medical Revolution with Design and Development of Humanoid for Supporting Healthcare

  • Deepshikha Bhargava
  • Sameer Saxena
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 258)


Healthcare robot technology is one of the emerging issues in the field of robotics, and not only researchers are working in the field of Humanoid but also many companies and institutes have develop Humanoids. The humanoid on healthcare has abilities to support physical and mental health which pertain to functions and interaction with a person. This paper presents an overview towards building an agent based humanoid that will work for the purpose of improving healthcare processes using a system called Robot Healthcare Management System. This paper highlights upon, a healthcare system with a humanoid by using speech, gesture, and emotions. This paper begins with the Introduction and the need of the system in Sect. 1. The Sect. 2 explores the literature relevant to research area. Further this paper discusses the motivation of research and its objectives in Sects. 3 and 4 respectively. The next section highlights upon the role, multi-agent architecture and the functionality of agent engine. At the last paper explores the research methodology and finally concludes.


RoHeMaSys Agents Visual agent (VA) Audio agent (A2) Visual-audio agent (VA2) 


  1. 1.
    Park, M., et al. Automatic configuration recognition methods in modular robots. Int. J. Robot. Res. 27(3–4), 403–421 (2008)Google Scholar
  2. 2.
    Yi, Sungil, et al.: Healthcare robot technology development. World Congress, vol. 17, no. 1 (2008)Google Scholar
  3. 3.
    Jung, H.-W., Seo, Y.-H., Ryoo, M.S., Yang H.S.: Affective communication system with multimodality for humanoid robot. In: AMI,IEEE/RAS International Conference on Humanoid Robots, vol. 2, pp. 690–706 (2004)Google Scholar
  4. 4.
    Cheng, G., Hyon, S.-H., Morimoto, J., Ude, A., Hale, J.G., Colvin, G., Scroggin, W., Jacobsen, S.C.: CB: A humanoid research platform for exploring neuroscience. Adv. Rob. 21(10), 1097–1114 (2007)Google Scholar
  5. 5.
    Priyesh, T., Warren, J., Day, K., MacDonald, B., Jayawardena, C., Kuo, I., Igic, A., Datta, C.:Feasibility study of a robotic medication assistant for the elderly. In: Australasian User Interface Conference (2011)Google Scholar
  6. 6.
    Cynthia, B., Brooks, A., Chilongo, D., Gray, J., Hoffman, G., Kidd, C., Lee, H., Lieberman, J., Lockerd, A.:Working collaboratively with humanoid robots. In: Humanoid Robots, 4th IEEE/RAS International Conference on IEEE, vol. 1, pp. 253–272 (2004)Google Scholar
  7. 7.
    Tapus, A.: Assistive robotics for healthcare and rehabilitation. In: Proceedings of the 17th International Conference on Control Systems and Computer Science (CSCS) (2009)Google Scholar
  8. 8.
    Swangnetr, M., Zhu, B., Kaber, D., Taylor, K.: Meta-analysis of user age and service robot configuration effects on human-robot interaction in a healthcare application. In: 2010 AAAI Fall Symposium Series (2010)Google Scholar
  9. 9.
    Bischoff, R., Jain, T.: Natural communication and interaction with humanoid robots. In: Second International Symposium on Humanoid Robots (1999)Google Scholar
  10. 10.
    Peters, R.A., Wilkes, D.M., Gaines, D.M., Kawamura, K.: A software agent based control system for human-robot interaction. In: Proceedings of the Second International Symposium on Humanoid Robot (1999, October)Google Scholar
  11. 11.
    Inamura, T., Inaba, M., Inoue, H.: Acquisition of probabilistic behavior decision model based on the interactive teaching method. In Ninth International Conference on Advanced Robotics (ICAR), pp. 523–528 (1999) Google Scholar
  12. 12.
    Swinson, M.L., Bruemmer, D.D.J.: In: IEEE Intelligent Systems Special Issue on Humanoid Robotics, July/August 2000 GUEST. Expanding Frontier s of Humanoid Robotics. Strategic AnalysisGoogle Scholar
  13. 13.
    Sobh, T.M., Wang, B., Coble, K.W.: Experimental robot musicians. J. Intell. Rob. Syst. 38(2), 197–212 (2003)CrossRefGoogle Scholar
  14. 14.
    Dautenhahn, K., Nehaniv, C.L., Walter s, M.L., Robins, B., Kose-Bagci, H., Assif Mirza, N., Blow, M.: KASPAR–a minimally expressive humanoid robot for human–robot interaction research. Appl. Bionics Biomech. 6(3–4), 369–397 (2009)Google Scholar
  15. 15.
    Laschi, C., Dario, P., Carrozza, M.C., Guglielmelli, E., Teti, G., Taddeucci, D., Leoni, F., Massa, B., Zecca, M., Lazzarini, R.: Grasping and manipulation in humanoid robotics. In: First IEEE-RAS International Conference on Humanoid Robots, Cambridge, MA (2000)Google Scholar
  16. 16.
    Baltes, J., McCann, S., Anderson, J.: Humanoid robots: abarenbou and daodan. In: RoboCup-Humanoid League Team Description (2006)Google Scholar
  17. 17.
    Jiang, S., Nagashima, F.: Biologically Inspired Spinal locomotion Controller for Humanoid Robot, 19th Annual Conference of the Robotics Society of Japan, 517–518 (2001) Google Scholar
  18. 18.
    Wong, C.-C, Cheng, C.-T., Huang, K.-H., Yang, Y.-T.: Design and implementation of humanoid robot for obstacle avoidance. In: FIRA Robot World Congress, San Francisco, CA (2007)Google Scholar
  19. 19.
    Haring, K.S., Mougenot, C., Ono, F., Watanabe, K.: Cultural differences in perception and attitude towards robots. In: International Conference on Kansei Engineering and Emotion Research, Penghu, Taiwan (2012)Google Scholar
  20. 20.
    Lutfi, S.: Will domestic robotics enter our houses? : a study of implicit and explicit associations and attitudes towards domestic robotics (2012)
  21. 21.
  22. 22.
    Adams, B., Breazeal, C., Brooks, R.A., Scassellati, B.: Humanoid robots: a new kind of tool. Intell. Syst. Appl. IEEE 15(4), 25–31 (2000)Google Scholar
  23. 23.
    Behnke, S.: Humanoid robots–from fiction to reality? Künstliche Intelligenz Heft 4, 5–9 (2008)Google Scholar
  24. 24.
  25. 25.
    Dickstein-Fischer, L., et al.: An affordable compact humanoid robot for autism spectrum disorder interventions in children. In: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (2011)Google Scholar
  26. 26.
    Levin, E.: Software architecture for a humanoid robot for autism spectrum disorder interventions in children Diss. Worcester Polytechnic Institute, Worcester (2012)Google Scholar
  27. 27.
    Costa, S., et al.: “Where is Your Nose?”-Developing body awareness skills among children with autism using a humanoid robot. In: ACHI 2013, The Sixth International Conference on Advances in Computer-Human Interactions (2013)Google Scholar
  28. 28.
  29. 29.
    Becker-Asano, C., Wachsmuth, I.: Affective computing with primary and secondary emotions in a virtual human. Auton. Agent. Multi-Agent Syst. 20(1), 32–49 (2010)CrossRefGoogle Scholar
  30. 30.
    Do Hoang, Q.A., et al.: Human-robot interactions: model-based risk analysis and safety case construction. In: 6th European Congress on Embedded Real-Time Software and Systems (2012)Google Scholar
  31. 31.
    Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robot. Auton. Syst. 42(3), 143–166 (2003)CrossRefMATHGoogle Scholar
  32. 32.
    Pineau, J., Montemerlo, M., Pollack, M., Roy, N., Thrun, S.: Towards robotic assistants in nursing homes: challenges and results. Robot. Auton. Syst. 42(3), 271–281 (2003)CrossRefMATHGoogle Scholar
  33. 33.
    Broadbent, E., Jayawardena, C., Stafford, R.Q., MacDonald, B.A.: Human-robot interaction research to improve quality of life in elder care—An approach and issues. In: Human-Robot Interaction in Elder Care: Papers from the 2011 AAAI Workshop. WS-11–12, pp. 13–19 (2011)Google Scholar
  34. 34.
    Carlson Tom, Jose del R. Millan: Brain–controlled wheelchairs: a robotic architecture, IEEE Robot. Autom. Mag. 20(1), 65–73 (2013) doi: 10.1109/MRA.2012.2229936
  35. 35.
    Habibizad navin, A., Mirnia, M.K., Branch, T.: A new algorithm to classify face emotions through eye and lip features by using particle swarm optimization. In: 2012 4th International Conference on Computer Modeling and Simulation (ICCMS 2012) IPCSIT, vol. 22 (2012) © Islamic Azad University, Tabriz, Iran (2012, in IACSIT, Singapore press)Google Scholar
  36. 36.
    Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on statistical local features. Universal short title catalogue book (2009)Google Scholar
  37. 37.
    Mpiperis, I., Sotiris, M., Strintzis, M. G.: Bilinear models for 3-D face and facial expression recognition. Information Forensics and Security, IEEE Transactions on 3. 3, 498–511 (2008)Google Scholar
  38. 38.
    Hornung, A., Wurm, K.M., Bennewitz, M.: Humanoid robot localization in complex indoor environments. International Conference on Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ, (2010)Google Scholar
  39. 39.
    Behnke, S., et al.: NimbRo RS: a low-cost autonomous humanoid robot for multi-agent research. In: Proceedings of Workshop on Methods and Technology for Empirical Evaluation of Multi-Agent Systems and Multi-robot Teams (MTEE) at the 27th German Conference on Artificial Intelligence (KI2004), Ulm, Germany, (2004)Google Scholar
  40. 40.
    Dautenhahn, K., Werry, I.: Issues of robot-human interaction dynamics in the rehabilitation of children with autism. Proc. From animals to animats 6, 519–528 (2000)Google Scholar
  41. 41.
    Khatib, O., Sentis, L., Park, J.-H.: A unified framework for whole-body humanoid robot control with multiple constraints and contacts. In: European Robotics Symposium. Springer, Berlin, Heidelberg (2008)Google Scholar
  42. 42.
    Brock, O., et al.: A framework for learning and control in intelligent humanoid robots. Int. J. Humanoid Rob. 2(03), 301–336 (2005)Google Scholar
  43. 43.
    Pai, S., Ayare, S., Kapadia R.: Eye controlled wheelchair. Int. J. Sci. Eng. Res. 3(10), ISSN 2229–5518 (2012)Google Scholar
  44. 44.
    Arai, K., Mardiyanto, R.: Eyes based eletric wheel chair control system. Int. J. Adv. Comput. Sci. Appl. 2(12), 98–105 (2011) Google Scholar
  45. 45.
    Platt, R., Brock, O., Fagg, A. H., Karupiah, D., Rosenstein, M., Coelho, J., Huber, M., Piater, J., Wheeler, D., Grupen, R.: A framework for humanoid control and intelligence, in Proceedings of the IEEE International Conference on Humanoid Robots (HUMANOIDS-03), Karlsruhe & Munich, Germany, 2003Google Scholar
  46. 46.
  47. 47.
  48. 48.
    Arsenio, A.: M. Towards pervasive robotics. Massachusetts Institute of Technology Cambridge Artificial Intelligence Lab, Cambridge (2003)Google Scholar
  49. 49.
    Asada, M., et al.: Cognitive developmental robotics as a new paradigm for the design of humanoid robots. Robot. Auton. Syst. 37(2), 185–193 (2001)Google Scholar
  50. 50.
    Bhargava, D., Sinha, M.: Design and implementation of agent based inter process synchronization manager. Int. J. Comput. Appl. 46(21), 17–22 (2012)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Amity Institute of Information TechnologyAmity University RajasthanJaipurIndia

Personalised recommendations