A Low Cost Electrical Impedance Tomography (EIT) Instrumentation for Impedance Imaging of Practical Phantoms: A Laboratory Study

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 259)

Abstract

A low cost Electrical Impedance Tomography (EIT) instrumentation is developed for studying the impedance imaging of practical phantoms. The EIT instrumentation is developed with a constant current injector, signal conditioner block and a DIP switch based multiplexer module. The constant current injector consists of a variable frequency Voltage Controlled Oscillator (VCO) and a modified Howland based Voltage Control Current Source (VCCS). The signal conditioner block is made up of an instrumentation amplifier (IAmp), a 50 Hz notch filter (NF) and a narrow band pass filter (NBPF) developed by cascading one lowpass filter and a highpass filter. The electrode switching module is developed using DIP switch based multiplexers to switch the electrodes sequentially for injecting current and measuring the boundary voltage data. Load response, frequency response and the Fast Fourier Transform (FFT) studies are conducted to evaluate the VCO, VCCS, IAmp, NF and NBPF performance. A number of practical phantoms are developed and the resistivity imaging is studied in EIDORS to evaluate the instrumentation. Result shows that the instrumentation is suitable for laboratory based practical phantom imaging studies.

Keywords

Electrical impedance tomography (EIT) Low cost EIT instrumentation VCO VCCS Practical phantom Boundary potentials Reconstructed image EIDORS 

References

  1. 1.
    Webster, J.G.: Electrical Impedance Tomography. Adam Hilger Series of Biomedical Engineering. Adam Hilger, New York (1990)Google Scholar
  2. 2.
    Holder, D.S.: Electrical Impedance Tomography: Methods, History And Applications. Series in Medical Physics and Biomedical Engineering. Institute of Physics Publishing Ltd. (2005)Google Scholar
  3. 3.
    Bera, T.K., Nagaraju, J.: Electrical Impedance Tomography (EIT): A Harmless Medical Imaging Modality. Research Developments in Computer Vision and Image Processing: Methodologies and Applications, Chap. 13, pp 224–262, IGI Global, USAGoogle Scholar
  4. 4.
    Bera, T.K., Nagaraju, J.: Sensors for electrical impedance tomography. In: Webster, J.G. (ed.) The Measurement, Instrumentation, and Sensors Handbook, 2nd Edn, Chap. 61, pp 61-1–61-30. CRC Press, Boca Raton (2014)Google Scholar
  5. 5.
    Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. SIAM Rev. 41(1), 85–101 (1999)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bera, T.K., Nagaraju, J.: Studying the resistivity imaging of chicken tissue phantoms with different current patterns in electrical impedance tomography (EIT). Measurement 45, 663–682 (2012)CrossRefGoogle Scholar
  7. 7.
    Bera, T.K., Nagaraju, J.: Studies on the thin film based flexible gold electrode arrays for resistivity imaging in electrical impedance tomography. Measurement 47, 264–286, Impact Factor: 1.130 (2014)Google Scholar
  8. 8.
    Bera, T.K., Nagaraju, J.: A multifrequency electrical impedance tomography (EIT) system for biomedical imaging. In: International Conference on Signal Processing and Communications (SPCOM 2012), India, IISc, Bangalore, Karnataka, India, pp. 1–5Google Scholar
  9. 9.
    Seo, J.K., Woo, E.J.: Nonlinear inverse problem in imaging. Wiley, New York (2012)Google Scholar
  10. 10.
    Brown, B.H.: Electrical impedance tomography (EIT): a review. J. Med. Eng. Technol. 27(3), 97–108 (2003)Google Scholar
  11. 11.
    Bera, T.K., Nagaraju, J.: Studying the boundary data profile of a practical phantom for medical electrical impedance tomography with different electrode geometries. In: Dössel, O., Schlegel, W.C. (eds.) Proceedings of the World Congress on Medical Physics and Biomedical Engineering. Munich, Germany, WC 2009, IFMBE Proceedings 25/II, pp. 925–929 (2009)Google Scholar
  12. 12.
    Yorkey, T.J.: Comparing reconstruction methods for electrical impedance tomography. PhD thesis, University of Wisconsin at Madison, Madison, WI 53706 (1986)Google Scholar
  13. 13.
    Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving conductivity image quality using block matrix-based multiple regularization (BMMR) technique in EIT: a simulation study. J. Electr. Bioimpedance 2, 33–47 (2011)Google Scholar
  14. 14.
    Lionheart, W.R.B.: EIT reconstruction algorithms: pitfalls, challenges and recent developments. Physiol. Meas. 25, 125–142 (2004). Review articleCrossRefGoogle Scholar
  15. 15.
    Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving image quality in electrical impedance tomography (EIT) using projection error propagation-based regularization (PEPR) technique: a simulation study. J. Electr. Bioimpedance 2, 2–12 (2011)Google Scholar
  16. 16.
    Jing, L., Liu, S., Zhihong, L., Meng, S.: An image reconstruction algorithm based on the extended Tikhonov regularization method for electrical capacitance tomography. Measurement 42(3), 368–376 (2009)CrossRefGoogle Scholar
  17. 17.
    Bera, T.K., Nagaraju, J.: A simple instrumentation calibration technique for electrical impedance tomography (EIT) using a 16 electrode phantom. In: The fifth annual IEEE conference on automation science and engineering (IEEE CASE), India, pp. 347–352 (2009)Google Scholar
  18. 18.
    Teniou, S., Meribout, M.: A new hierarchical reconstruction algorithm for electrical capacitance tomography using a relaxation region-based approach. Measurement 45(4), 683–690 (2012)CrossRefGoogle Scholar
  19. 19.
    Bera, T.K., Nagaraju, J.: A multifrequency constant current source for medical electrical impedance tomography. In: Proceedings of the IEEE international conference on systems in medicine and biology. Kharagpur, India, pp. 278–283 (2010)Google Scholar
  20. 20.
    Soleimani, M.: Electrical impedance tomography system: an open access circuit design. BioMed. Eng. (OnLine) 5(28), 1–8 (2006)Google Scholar
  21. 21.
    Bera, T.K., Nagaraju, J.: Surface electrode switching of a 16-electrode wireless EIT system using RF-based digital data transmission scheme with 8 channel encoder/decoder ICs. Measurement 45, 541–555 (2012)CrossRefGoogle Scholar
  22. 22.
    Oh, T.I., Wi, H., Kim, D.Y., Yoo, P.J., Woo, E.J.: A fully parallel multi-frequency EIT system with flexible electrode configuration: KHU Mark2. Physiol. Meas. 32, 835Google Scholar
  23. 23.
    Bera, T.K., Nagaraju, J.: Switching of a sixteen electrode array for wireless eit system using a RF-based 8-bit digital data transmission technique. In: Communications in Computer and Information Science, Part I, CCIS 269, pp. 202–211. Springer, Berlin (2012)Google Scholar
  24. 24.
    Bera, T.K., Nagaraju, J.: Switching of the surface electrodes array in A 16-electrode EIT system using 8-bit parallel digital data. In: IEEE World Congress on Information and Communication Technologies, Mumbai, India, pp. 1288–1293 (2011)Google Scholar
  25. 25.
    Holder, D.S., Hanquan, Y., Rao, A.: Some practical biological phantoms for calibrating multifrequency electrical impedance tomography. Physiol. Meas. 17, A167–A177 (1996)CrossRefGoogle Scholar
  26. 26.
    Bera, T.K., Nagaraju, J.: A chicken tissue phantom for studying an electrical impedance tomography (EIT) system suitable for clinical imaging. Sens. Imaging: Int. J. 12(3–4), 95–116Google Scholar
  27. 27.
    Sperandio, M., Guermandi, M., Guerrieri, R.: A four-shell diffusion phantom of the head for electrical impedance tomography. IEEE Trans. Biomed. Eng. 59(2), 383–389 (2012)CrossRefGoogle Scholar
  28. 28.
    Bera, T.K., Nagaraju, J.: Resistivity imaging of a reconfigurable phantom with circular inhomogeneities in 2D-electrical impedance tomography. Measurement 44(3), 518–526 (2011)CrossRefGoogle Scholar
  29. 29.
    Kimoto, A., Shida, K.: Imaging of temperature-change distribution in the brain phantom by means of capacitance measurement. IEEE Trans. Instrum. Meas. 49(3) (2000)Google Scholar
  30. 30.
    Bera, T.K., Nagaraju, J.: A reconfigurable practical phantom for studying the 2D electrical impedance tomography (EIT) using a fem based forward solver. In: 10th International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT 2009), Manchester, UK (2009)Google Scholar
  31. 31.
    Bera, T.K., Nagaraju, J.: A study of practical biological phantoms with simple instrumentation for electrical impedance tomography (EIT). In: Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC2009), Singapore, pp. 511–516 (2009)Google Scholar
  32. 32.
    Bera, T.K., Nagaraju, J.: A simple instrumentation calibration technique for electrical impedance tomography (EIT) using a 16 electrode phantom. In: 5th Annual IEEE Conference on Automation Science and Engineering, Bangalore, pp. 347–352 (2009)Google Scholar
  33. 33.
    Bera, T.K., Nagaraju, J.: A stainless steel electrode phantom to study the forward problem of electrical impedance tomography (EIT). Sens. Transducers J. 104(5), 33–40 (2009)Google Scholar
  34. 34.
    Wang, M., Ma, Y., Holliday, N., Dai, Y., Williams, R.A., Lucas, G.: A high-performance EIT system. IEEE Sens. J. 5(2), 289 (2005)Google Scholar
  35. 35.
    Goharian, M., Soleimani, M., Jegatheesan, A., Chin, K., Moran, G.R.: A DSP based multi-frequency 3D electrical impedance tomography system. Ann. Biomed. Eng. 36(9), 1594–1603 (2008)Google Scholar
  36. 36.
    Casas, O., Rosell, J., Brag′os, R., Lozano, A., Riu, P.J.: A parallel broadband real-time system for electrical impedance tomography. Physiol. Meas. 17, A1–A6 (1996)CrossRefGoogle Scholar
  37. 37.
    Malmivuo, J., Plonsey, R.: Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields, Chap. 26, Sect. 26.2.1. Oxford University Press, New York (1995)Google Scholar
  38. 38.
    Bera, T.K., Nagaraju, J.: Studying the 2D resistivity reconstruction of stainless steel electrode phantoms using different current patterns of electrical impedance tomography (EIT). In: Biomedical Engineering, Narosa Publishing House, Proceeding of the International Conference on Biomedical Engineering 2011 (ICBME-2011), Manipal, pp. 163–169 (2011)Google Scholar
  39. 39.
    Polydorides, N., Lionheart, W.R.B.: A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas. Sci. Technol. 13, 1871–1883 (2002)CrossRefGoogle Scholar
  40. 40.
    Bera, T.K., Nagaraju, J.: A MATLAB based boundary data simulator for studying the resistivity reconstruction using neighbouring current pattern. J. Med. Eng. 15 (2013) (Article ID 193578)Google Scholar
  41. 41.
    Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Image reconstruction in electrical impedance tomography (EIT) with projection error propagation-based regularization (PEPR): a practical phantom study. In: Lecture Notes in Computer Science, vol. 7135/2012, pp. 95–105. Springer, Berlin (2012)Google Scholar
  42. 42.
    Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving the image reconstruction in electrical impedance tomography (EIT) with block matrix-based multiple regularization (BMMR): a practical phantom study. In: IEEE World Congress on Information and Communication Technologies, India, pp. 1346–1351 (2011)Google Scholar
  43. 43.
    Bera, T.K., Nagaraju, J.: Studying the elemental resistivity profile of electrical impedance tomography (EIT) images to assess the reconstructed image quality. In: 5th International Conference on Information Processing (ICIP 2011). Communications in Computer and Information Science, vol. 157 (CCIS-157), India, pp. 621–630 (2011)Google Scholar
  44. 44.
    Bera, T.K., Nagaraju, J.: Gold electrode sensors for electrical impedance tomography (EIT) studies. In: IEEE Sensors Application Symposium, USA, pp. 24–28 (2011)Google Scholar
  45. 45.
    Data Sheet, MAX038-high-frequency waveform generator, Maxim Integrated Prod., Inc. USAGoogle Scholar
  46. 46.
    Data Sheet, AD811—120 MHz, High Speed, Low Noise Video Op Amp, Analog Devices, IncGoogle Scholar
  47. 47.
    Bell, A.: Operational Amplifiers: Applications, Design and Troubleshooting, 2nd Edn, pp. 272–276. Prentice-Hall, Englewood Cliffs, Chap. 11, 9 Jan 1990Google Scholar
  48. 48.
    Wang, P., Guo, B., Li, N.: Multi-index optimization design for electrical resistance tomography sensor. Measurement 46(8), 2845–2853 (2013)CrossRefMathSciNetGoogle Scholar
  49. 49.
    Li, Y., Soleimani, M.: Imaging conductive materials with high frequency electrical capacitance tomography. Measurement 46, 3355–3361 (2013)Google Scholar
  50. 50.
    Gao, H., Xu, C., Fu, F., Wang, S.: Effects of particle charging on electrical capacitance tomography system. Measurement 45(3), 375–383 (2012)CrossRefGoogle Scholar
  51. 51.
    Fan, Z., Gao, R.X., Wang, J.: Virtual instrument for online electrical capacitance tomography, practical applications and solutions using LabVIEW, Edited by Folea Silviu, ISBN 978-953-307-650-8, Published: Aug 1 2011 under CC BY-NC-SA 3.0 licenseGoogle Scholar
  52. 52.
    Dickin, F., Wang, M.: Electrical resistance tomography for process applications. Meas. Sci. Technol. 7, 247–260 (1996)CrossRefGoogle Scholar
  53. 53.
    Daffy, W., Ramlrez, A.: Electrical resistance tomography during in situ trichloroethylene remediation at the Savannah River Site. J. Appl. Geophys. 33, 239–249 (1995)CrossRefGoogle Scholar
  54. 54.
    Beauvais, A., Ritz, M., Parisot, J.-C., Dukhan, M., Bantsimba, C.: Analysis of poorly stratified lateritic terrains overlying a granitic bedrock in West Africa, using 2-D electrical resistivity tomography. Earth Planet. Sci. Lett. 173, 413–424 (1999)CrossRefGoogle Scholar
  55. 55.
    Kemna, A., Vanderborght, J., Kulessa, B., Vereecken, H.: Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J. Hydrol. 267, 125–146 (2002)CrossRefGoogle Scholar
  56. 56.
    Beauvaisa, A., Ritz, M., Parisot, J.-C., Bantsimba, C., Dukhan, M.: Combined ERT and GPR methods for investigating two-stepped lateritic weathering systems. Geoderma 119, 121–132 (2004)CrossRefGoogle Scholar
  57. 57.
    Data Sheet, DIP Switches, EDG/EDS type, Excel Cell Electronic Co. Ltd., No. 20, 25th Rd., Taichung Industrial Park, Taichung, TaiwanGoogle Scholar
  58. 58.
    Cheng, K.S., Simske, S.J., Isaacson, D., Newell, J.C., Gisser, D.G.: Errors due to measuring voltage on current-carrying electrodes in electric current computed tomography. IEEE Trans. Biomed. Eng. 37(60), 60–65 (1990)CrossRefGoogle Scholar
  59. 59.
    Bera, T.K., Nagaraju, J.: A FEM-based forward solver for studying the forward problem of electrical impedance tomography (EIT) with a practical biological phantom. In: Proceedings of IEEE International Advance Computing Conference’ 2009 (IEEE IACC 2009), 6–7th Mar 2009, Patiala, Punjab, India, pp. 1375–1381Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of Instrumentation and Applied PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations