Neural Network Based Dynamic Performance of Induction Motor Drives

  • P. M. Menghal
  • A. Jaya Laxmi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 259)


In industries, more than 85 % of the motors are Induction Motors, because of the low maintenance and robustness. Maximum torque and efficiency is obtained by the speed control of induction motor. Using Artificial Intelligence (AI) techniques, particularly the neural networks, performance and operation of induction motor drives is improved. This paper presents dynamic simulation of induction motor drive using neuro controller. The integrated environment allows users to compare simulation results between conventional, Fuzzy and Neural Network controller (NNW). The performance of fuzzy logic and artificial neural network based controller’s are compared with that of the conventional proportional integral controller. The dynamic modeling and simulation of Induction motor is done using MATLAB/SIMULINK and the dynamic performance of induction motor drive has been analyzed for artificial intelligent controller.


Neuro network (NNW) PI controller Fuzzy logic controller (FLC) Sugeno fuzzy controller Hebbian learning algorithm 


  1. 1.
    Chan, T.F., Shi, K.: Applied Intelligent Control of Induction Motor Drives. IEEE Willey Press (2011)Google Scholar
  2. 2.
    Krause, P.C.: Analysis of Electrical Machinery and Drives System. IEEE Willey Press (2000)Google Scholar
  3. 3.
    Mohan, N.: Advanced Electric Drives: Analysis, Control Modeling using Simulink. MNPERE Publication (2001)Google Scholar
  4. 4.
    Menghal, P.M., Laxmi, A.J.: Adaptive neuro fuzzy based dynamic simulation of induction motor drives. IEEE International Conference on Fuzzy Systems, pp. 1–8 (2013)Google Scholar
  5. 5.
    Menghal, P.M., Laxmi, A.J.: Neural network based dynamic simulation of induction motor drives. IEEE International Conference on Power, Energy and Control (2013). doi: 10.1109/ICPEC.2013.6527722
  6. 6.
    Menghal, P.M., Laxmi, A.J.: Adaptive neuro fuzzy interference (ANFIS) based simulation of Induction motor drive. Int. Rev. Model. Simul. (IRMOS) 5(5), 2007–2016 (2012)Google Scholar
  7. 7.
    Shi, K.L., Chan, T.F., Wong, Y.K., Ho, S.L.: Modeling and simulation of the three phase induction motor using SIMULINK. Int. J. Elect. Eng. Educ. 36, 163–172 (1999)Google Scholar
  8. 8.
    Dandil, B., Gokbulut, M., Ata, F.: A PI type fuzzy—neural controller for induction motor drives. J. Appl. Sci. (2005). doi: 10.3923/jas.2005.1286.1291
  9. 9.
    Kumar, R., Gupta, R.A., Surjuse, R.S.: Adaptive neuro-fuzzy speed controller for vector controlled induction motor drive. APEJ (2009). doi: 14.79e41505757a2a8cab
  10. 10.
    Denai, M.A., Attia, S.A.: Fuzzy and neural control of an induction motor. Int. J. Appl. Math. Comput. Sci. (2002). doi:
  11. 11.
    Subudhi, B., Anish Kumar, A.K., Jena, D.: dSPACE implementation of fuzzy logic based vector control of induction motor. IEEE TENCON (2008). doi: 10.1109/TENCON.2008.4766502
  12. 12.
    Bose, B.K.: Neural network applications in power electronics and motor drives—an introduction and perspective. IEEE Trans. Ind. Electron. (2007). doi: 10.1109/TIE.2006.888683
  13. 13.
    Uddin, M.N., Hafeez, M.: FLC-based DTC scheme to improve the dynamic performance of an IM drive. IEEE Trans. Ind. Appl. (2012). doi: 10.1109/TIA.2011.2181287
  14. 14.
    Uddin, M.N., Wen, H.: Development of a self-tuned neuro-fuzzy controller for induction motor drives. IEEE Trans. Ind. Appl. (2007). doi: 10.1109/TIA.2007.900472
  15. 15.
    Uddin, M.N., Radwan, T.S., Rahman, A.: Performance of fuzzy logic based indirect vector control for induction motor drive. IEEE Trans. Ind. Appl. (2002). doi: 10.1109/TIA.2002.802990
  16. 16.
    Uddin, M.N., Huang, Z.R., Chy, M.M.I.: A simplified self-tuned neuro-fuzzy controller based speed control of an induction motor drive. IEEE Power Engineering Society General Meeting (2007). doi: 10.1109/PES.2007.385720

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Faculty of Degree EngineeringMilitary College of Electronics and Mechanical EngineeringSecunderabadIndia
  2. 2.Department of EEEJawaharlal Nehru Technological UniversityAnantapurIndia
  3. 3.Department of EEEJawaharlal Nehru Technological University, College of EngineeringHyderabadIndia

Personalised recommendations