A Survey on Web Information Retrieval Inside Fuzzy Framework

  • Shruti Kohli
  • Ankit Gupta
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 259)


With the emergence of web as one of the primary mode of information sharing and searching, it is a challenge posed to the researchers and developers to design the information retrieval system which can effectively and efficiently returns the query result as per user’s requirement. This survey paper tends to find out some challenges posed by information retrieval and how the concept of fuzzy helps to solve those challenges.


Fuzzy logic Web intelligence Information retrieval 


  1. 1.
    Zhong, N., Jiming, L., Yao, Y.Y., Ohsuga, S.: Web intelligence. In: Proceedings of 24th Annual International Computer Software and Application Conference, COMPSAC (2000)Google Scholar
  2. 2. Retrieved on 18 Jan 2013
  3. 3.
  4. 4.
    Impact of Internet Technologies: Search. Mckinsey & Company, New York, July (2011)Google Scholar
  5. 5.
    Arotaritei, D., Mitra, S.: Web mining: a survey in the fuzzy framework. Fuzzy Sets Syst. 148, 5–19 (2004)Google Scholar
  6. 6.
    Pal, S.K., Talwar, V., Mitra, P.: Web mining in soft computing framework: relevance, state of the art and future directions. IEEE Trans. Neural Netw. 13(5), 1163–1177 (2002)Google Scholar
  7. 7.
    Mitra, S., Pal, S.K., Mitra, P.: Data mining in soft computing framework: a survey. IEEE Trans. Neural Netw. 13(1) 3–14 (2002)Google Scholar
  8. 8.
    Kobayashi, M., Takeda, K.: Information retrieval on the web. ACM Comput. Surv. 32(2) (2000)Google Scholar
  9. 9.
    Domenech, J., de la Ossa, B., Sahuquillo, J., Gil, J.A., Pont, A.: A taxonomy of web prediction algorithm. Expert Syst. Appl. 39, 8496–8502 (2012)Google Scholar
  10. 10.
    Ferrandez, A.: Lexical and syntactical knowledge for information retrieval. Inf. Process. Manage. 47, 692–705 (2011)Google Scholar
  11. 11.
    Kim M.H., Lee, J.H., Lee, Y.J.: Analysis of fuzzy operators for high quality information retrieval. Inf. Process. Lett. 46, 251–256 (1993)Google Scholar
  12. 12.
    Klir, G.J., Yuan, B.: Fuzzy sets and fuzzy logic: theory and applications. Prentice-Hall, Upper Saddle River, NJ (1995)Google Scholar
  13. 13.
    Lucarella, D.: Uncertainty in information retrieval: an approach based on fuzzy sets. In: proceedings of 9th Annual International Phoenix Conference on Computer and Communication, pp. 809–814. Arizona, USA (1990)Google Scholar
  14. 14.
    Salton, S.: Automatic Text Processing: The Transformation, Analysis and Retrieval of Information by Computers. Addison-Wesley, Reading, MA (1989)Google Scholar
  15. 15.
    Zadeh, L.A.: What is soft computing. Soft Comput. 1(1), 1 (1997)CrossRefGoogle Scholar
  16. 16.
    Bruandet, M.F.: Outline of a knowledge base model for an intelligent information retrieval system. Inf. Process. Manage. 25(1), 89–115 (1989)Google Scholar
  17. 17.
    Lucarella, D., Morara, R.: First: fuzzy information retrieval system. J. Inf. Sci. 17, 81–91 (1991)Google Scholar
  18. 18.
    Kracker, M.: A fuzzy concept network model and its applications. In: Proceedings 1st IEEE Conference Fuzzy System, pp. 761–768 (1992)Google Scholar
  19. 19.
    Chen, S., Hong, Y.J.: Fuzzy Query processing for document retrieval based on extended fuzzy concept network. IEEE Trans. Syst. Man Cybern. Part-B 29, 96–104 (1999)Google Scholar
  20. 20.
    Chen, S.M., Horng, Y., Lee, C.H.: Fuzzy information retrieval based on multi relationship fuzzy concept networks. Fuzzy Sets Syst. 140, 183–205 (2003)Google Scholar
  21. 21.
    Herrera, F., Viedma, E.H., Chiclana, F.: A study of the origin and uses of the ordered weighted geometric operator in multicriteria decision making. Int. J. Intell. Syst. 18, 689–707 (2003)CrossRefMATHGoogle Scholar
  22. 22.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundation. Springer, Berlin (1999)Google Scholar
  23. 23.
    Formica, A.: Ontology based concept similarity in formal concept analysis. Inf. Sci. 176, 2624–2641 (2006)Google Scholar
  24. 24.
    Belohlavek, R., Outrata, J., Vychodil, V.: Fast factorization by similarity of fuzzy concept lattice with hedges. Int. J. Found. Comput. Sci. 19(2), 255–269 (2008)Google Scholar
  25. 25.
    Tho, Q.T., Hui, S.C., Fong, A.C.M., Cao, T.H.: Automatic fuzzy ontology generation for semantic web. IEEE Trans. Knowl. Data Eng. 18(6), 842–856 (2006)Google Scholar
  26. 26.
    Maio, C.D., Fenza, G., Loia, V., Senatore, S.: Hierarchical web resources retrieval by exploiting fuzzy formal concept analysis. Inf. Process. Manage. 48, 399–418 (2012)Google Scholar
  27. 27.
    Singh, P.K., Choudhary, A.K.: A method for decomposition of fuzzy formal context. In: International Conference on Modeling Optimization and Computing (ICMOS)-2012 in Procedia Engineering, vol. 38 pp. 1852–1857 (2012)Google Scholar
  28. 28.
    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision process. IEEE Trans. Syst. Man Cybern. 3, 28–44 (1973)Google Scholar
  29. 29.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)Google Scholar
  30. 30.
    Smolikova, R., Wachowiak, M.P.: Aggregation operators for selection problem. Fuzzy Sets Syst. 131, 23–34 (2002)Google Scholar
  31. 31.
    Gupta, M.M., Qi, J.: Theory of T-norms and fuzzy inference methods. Fuzzy Sets Syst. 40, 431–450 (1991)Google Scholar
  32. 32.
    Yager, R.R., Kacprzyk, J., Beliakov, G.: Recent developments in the ordered weighted averaging operators: theory and practice. Stud .Fuzziness Soft Comput. 205 (2011)Google Scholar
  33. 33.
    Pawlak, Z.: Rough sets. Int. J. Inf. Comput. Sci. 11(5), 341–356 (1982)Google Scholar
  34. 34.
    Zhao, Y., Halang, W., Wang, X.: Rough ontology mapping in e-business integration. Stud. Comput. Intell. 37, 75–93 (2007)Google Scholar
  35. 35.
    Giles, R.: Luckasiewicz logic and fuzzy set theory. Int. J. Man Mach. Stud. 8, 313–327 (1976)Google Scholar
  36. 36.
    Smith, M.E.: Aspects of the P-norm model of information retrieval: synthetic query generation, efficiency and theoretical properties. Ph.D. Dissertation, Cornell University (1990)Google Scholar
  37. 37.
    Bandler, W., Kohout, L.: Fuzzy power set and fuzzy implication operators. Fuzzy Sets Syst. 4, 13–30 (1980)Google Scholar
  38. 38.
    Marichal, J.L.: Aggregation operators for multicriteria decision aid. Ph.D. Dissertation, University De Liege (1999)Google Scholar
  39. 39.
    Yager, R.R.: On a general class of fuzzy operators. Fuzzy Sets Syst. 4, 235–242 (1980)Google Scholar
  40. 40.
    Chiclana, F., Herrera, F., Herrera-Viedma, E.: The ordered weighted geometric operator: properties and application. In: Proceedings of the 8th International Conference on Information Processing and Management of Uncertainty in Knowledge Based Systems, pp. 985–991. Madrid, Spain (2000)Google Scholar
  41. 41.
    Dombi, J.: A general class of fuzzy connectives. Fuzzy Sets Syst. 4, 235–242 (1980)Google Scholar
  42. 42.
    Xu, Z.S., Da, Q.L.: The ordered weighted geometric averaging operators. Int. J. Intell. Syst. 17, 709–716 (2002)CrossRefMATHGoogle Scholar
  43. 43.
    Weber, S.: A general concept of fuzzy connectives, negation and implications based on t-norms and t-conorms. Fuzzy Sets Syst. 11, 115–134 (1983)Google Scholar
  44. 44.
    Chiclana, F., Herrera-Viedma, E., Herrera, F., Alonso, S.: Induced ordered weighted geometric operators and their use in the aggregation of multiplicative preference relations. Int. J. Intell. Syst. 19, 233–255 (2004)Google Scholar
  45. 45.
    Chen, S.J, Chen, S.M.: Fuzzy information retrieval based on geometric mean averaging operators. Int. J. Comput. Math. Appl. 49, 1213–1231 (2005)Google Scholar
  46. 46.
    Dubois, D., Prade, H.: New results about properties and semantics of fuzzy set-theoretic operators. Fuzzy Sets, Plenum Press, New York 59–75 (1986)Google Scholar
  47. 47.
    Hong, W.S., Chen, S.J., Wang, L.H., Chen, S.M.: A new approach for fuzzy information retrieval based on weighted power mean averaging operators. Comput. Math. Appl. 53, 1800–1819(2007)Google Scholar
  48. 48.
    Birkoff, G.: Lattice Theory. American Mathematical Society, Providence RI (1967)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceBirla Institute of Technology, MesraRanchiIndia

Personalised recommendations