Crop Identification by Fuzzy C-Mean in Ravi Season Using Multi-Spectral Temporal Images

  • Sananda Kundu
  • Deepak Khare
  • Arun Mondal
  • P. K. Mishra
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 259)


Information regarding spatial distribution of different crops in a region of multi-cropping system is required for management and planning. In the present study, multi dated LISS-III and AWiFS data were used for crop identification. The cultivable land area extracted from the landuse classification of LISS-III image was used to generate spectral-temporal profile of crops according to their growth stages with Normalised Difference Vegetation Index (NDVI) method. The reflectance from the crops on 9 different dates identified separate spectral behavior. This combined NDVI image was then classified by Fuzzy C-Mean (FCM) method again to get 5 crop types for around 12,000 km2 area on Narmada river basin of Madhya Pradesh. The accuracy assessment of the classification showed overall accuracy of 88 % and overall Kappa of 0.83. The crop identification was done for one entire Ravi season from 23 October 2011 to 10 March 2012.


Crop identification NDVI Fuzzy C-Mean Narmada river basin 



The authors are thankful to the National Remote Sensing Centre (NRSC) for providing the AWiFS and LISS-III satellite images for the study area and to the UGC for financial assistance.


  1. 1.
    Wardlow, B., Egbert, S., Kastens, J.: Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Rem. Sens. Environ. 108, 290–310 (2007)Google Scholar
  2. 2.
    Masialeti, I., Egbert, S., Wardlow, B.D.: A comparative analysis of phonological curves for major crops in Kansas. GIScience Remote Sens. 47(2), 241–259 (2010)CrossRefGoogle Scholar
  3. 3.
    Vincent, S., Pierre, F.: Identifying main crop classes in an irrigated area using high resolution image time series. In: IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS’03), pp. 252–254 (2003)Google Scholar
  4. 4.
    Foerster, S., Kaden, K., Foerster, M., Itzerott, S.: Crop type mapping using spectral–temporal profiles and phenological information. Comput. Electron. Agric. 89, 30–40 (2012)CrossRefGoogle Scholar
  5. 5.
    Odenweller, J.B., Johnson, K.: Crop identification using Landsat temporal spectral profiles. Rem. Sens. Environ. 14, 39–54 (1984)CrossRefGoogle Scholar
  6. 6.
    Bradley, B.A., Jacob, R.W., Hermance, J.F., Mustard, J.F.: A curve fitting procedure to derive inter-annual phonologies from time series of noisy satellite NDVI data. Remote Sens. Environ. 106, 137–145 (2007)CrossRefGoogle Scholar
  7. 7.
    Wardlow, B., Egbert, S.: Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the U.S. Central Great Plains. Rem. Sens. Environ. 112, 1096–1116 (2008)Google Scholar
  8. 8.
    Reed, B.R., White, M.A., Brown, J.F.: Remote sensing phenology. In: Schwartz, M.D. (ed.) Phenology: An Integrative Environmental Science, pp. 365–381. Kluwer Academic Publishers, New York (2003)CrossRefGoogle Scholar
  9. 9.
    Doriaswamy, P.C., Akhmedov, B., Stern, A.J.: Improved techniques for crop classification using MODIS imagery. In: IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS’06), pp. 2084–2087 (2006)Google Scholar
  10. 10.
    Ying, L., Xiuwan, C., Hongwei, D., Lingkui, M.: An improved multi temporal masking classification method for winter wheat identification. In: International Conference on Audio Language and Image Processing (ICALIP’10), pp. 1648–1651 (2010)Google Scholar
  11. 11.
    Panigrahy, R.K., Ray, S.S., Panigrahy, S.: Study on utility of IRS-P6 SWIR band for crop discrimination and classification. J. Indian Soc. Remote Sens. 37(2), 325–333 (2009)CrossRefGoogle Scholar
  12. 12.
    Murthy, C.S., Raju, P.V., Badrinath, K.V.S.: Classification of wheat crop with multi-temporal images: performance of maximum likelihood and artificial neural networks. Int. J. Rem. Sens. 24(23), 4871–4890 (2003)CrossRefGoogle Scholar
  13. 13.
    Van Niel, T.G., Mc Vicar, T.R.: Determining temporal windows for crop discrimination with remote sensing: a case study in South-Eastern Australia. Comput. Electron. Agric. 45, 91–108 (2004)CrossRefGoogle Scholar
  14. 14.
    Zurita-Milla, R., Gomez-Chova, L., Guanter, L., Clevers, J.G.P.W., Camps-Valls, G.: Multi temporal un-mixing of medium spatial resolution satellite images: a case study using MERIS images for land cover mapping. In: IEEE Transactions on Geoscience and Remote Sensing Symposium, pp. 1–10 (2011)Google Scholar
  15. 15.
    Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)MATHGoogle Scholar
  16. 16.
    Wang, F.: Fuzzy supervised classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. Symp. 28, 194–201 (1990)CrossRefGoogle Scholar
  17. 17.
    Dave, R.N.: Characterization of noise in clustering. Pattern Recogn. Lett. 12, 657–664 (1991)CrossRefGoogle Scholar
  18. 18.
    Liang, P., Chunyu, Y.: Study on mixed pixel classification method of remote sensing image based on fuzzy theory. In: IEEE Conference Urban Remote Sensing Joint Event, pp. 1–7 (2009)Google Scholar
  19. 19.
    Jackson, R.D., Huete, A.R.: Interpreting vegetation indices. Preventory Vet. Med. 11, 185–200 (1991)CrossRefGoogle Scholar
  20. 20.
    Xie, Y., Sha, Z., Yu, M.: Remote sensing imagery in vegetation mapping: a review. J. Plant Ecol. 1(1), 9–23 (2008)CrossRefGoogle Scholar
  21. 21.
    Lillesand, T.M., Kiefer, R.W., Chipman, J.W.: Remote sensing and image interpretation. Wiley, New York (2008)Google Scholar
  22. 22.
    Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy C-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Sananda Kundu
    • 1
  • Deepak Khare
    • 1
  • Arun Mondal
    • 1
  • P. K. Mishra
    • 2
  1. 1.Department of Water Resources Development and ManagementIndian Institute of TechnologyRoorkeeIndia
  2. 2.Water Resources Systems Division National Institute of HydrologyRoorkeeIndia

Personalised recommendations