A LabVIEW Based Data Acquisition System for Electrical Impedance Tomography (EIT)

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 259)

Abstract

A LabVIEW based data acquisition system (LV-DAS) is developed for Electrical Impedance Tomography (EIT) for automatic current injection and boundary data collection. The developed LV-DAS consists of a NIUSB-6251 DAQ card, NISCB-68 connector module and an automatic electrode switching module (A-ESM). A LabVIEW based graphical user interface (LV-GUI) is develop to control the current injection and data acquisition by LV-DAS through A-ESM. Boundary data are collected for a number of practical phantoms and the boundary data profiles are studied to assess the LV-DAS. Results show that the high resolution NIDAQ card of the DAS improves its data acquisition performance with accurate measurement and high signal to noise ratio (SNR).

Keywords

Electrical impedance tomography (EIT) Data acquisition system LabVIEW Graphical user interface Practical phantom Boundary data profile 

References

  1. 1.
    Webster, J.G.: Electrical Impedance Tomography. Adam Hilger Series of Biomedical Engineering, Adam Hilger, New York (1990)Google Scholar
  2. 2.
    Bera, T.K., Nagaraju, J.: Electrical Impedance Tomography (EIT): A Harmless Medical Imaging Modality. Research Developments in Computer Vision and Image Processing: Methodologies and Applications, Chap. 13, pp. 224–262. IGI Global, USA (2013)Google Scholar
  3. 3.
    Wanga, P., Guo, B., Li, N.: Multi-index optimization design for electrical resistance tomography sensor. Measurement 46, 2845–2853 (2013)CrossRefGoogle Scholar
  4. 4.
    Bera, T.K., Nagaraju, J.: Studies on the thin film based flexible gold electrode arrays for resistivity imaging in electrical impedance tomography. Measurement. 47, 264–286 (2014). Impact Factor: 1.130Google Scholar
  5. 5.
    Holder, D.S.: Electrical Impedance Tomography: Methods, History and Applications, 1st edn. Institute of Physics Publishing Ltd., UK (2005)Google Scholar
  6. 6.
    Bera, T.K., Nagaraju, J.: A MATLAB based boundary data simulator for studying the resistivity reconstruction using neighbouring current pattern. J. Med. Eng. 15 (2013) (Article ID 193578)Google Scholar
  7. 7.
    Bera, T.K., Nagaraju, J.: Elemental resistivity profile analysis of EIT images to assess the reconstructed image quality. Int. J. Inf. Process. 7(1), 1–14 (2013)Google Scholar
  8. 8.
    Bushberg, J.T., Seibert, J.A., Leidholdt Jr., E.M., Boone, J.M.: The Essential Physics of Medical Imaging, 3rd edition. Lippincott Williams & Wilkins; Third, North American Edition edition (20 Dec 2011)Google Scholar
  9. 9.
    Hiller, J., Reindl, L.M.: A computer simulation platform for the estimation of measurement uncertainties in dimensional X-ray computed tomography. Measurement 45(8), 2166–2182 (2012)CrossRefGoogle Scholar
  10. 10.
    Davis, J., Wells, P.: Computed tomography measurements on wood. Ind. Metrol. 2(3–4), 195–218 (1992)CrossRefGoogle Scholar
  11. 11.
    Bera, T.K., Nagaraju, J.: Sensors for electrical impedance tomography. In: Webster, J.G. (ed.) The Measurement, Instrumentation, and Sensors Handbook, 2nd edition. CRC Press, Boca Raton, Chap. 61, pp. 61-1–61-30 (2014)Google Scholar
  12. 12.
    Lionheart, W.R.B.: EIT reconstruction algorithms: pitfalls, challenges and recent developments. Review Article, Physiol. Meas. 25, 125–142. PII: S0967-3334(04)70421-9 (2004)Google Scholar
  13. 13.
    Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving conductivity image quality using block matrix-based multiple regularization (BMMR) technique in EIT: a simulation study. J. Electr. Bioimp. 2, 33–47 (2011)Google Scholar
  14. 14.
    Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving image quality in electrical impedance tomography (EIT) using projection error propagation-based regularization (PEPR) technique: a simulation study. J. Electr. Bioimp. 2, 2–12 (2011)Google Scholar
  15. 15.
    Bera, T.K., Nagaraju, J.: Resistivity imaging of a reconfigurable phantom with circular inhomogeneities in 2D-electrical impedance tomography. Measurement 44(3), 518–526 (2011)CrossRefGoogle Scholar
  16. 16.
    Kerner, T.E., Williams, D.B., Osterman, K.S., Reiss, F.R., Hartov, A., Paulsen, K.D.: Electrical impedance imaging at multiple frequencies in phantoms. Physiol. Meas. 21, 67–77 (2000)CrossRefGoogle Scholar
  17. 17.
    Griffiths, H.: A cole phantom for EIT. Physiol. Meas. 16(1995), A29–A38 (1995)CrossRefGoogle Scholar
  18. 18.
    Kim, B.S., Kim, K.Y., Kao, T.J., Newell, J.C., Isaacson, D., Saulnier, G.J.: Dynamic electrical impedance imaging of a chest phantom using the Kalman filter. Physiol. Meas. 27(5), S81–S91 (2006)CrossRefGoogle Scholar
  19. 19.
    Kimoto, A., Shida, K.: Imaging of temperature-change distribution in the brain phantom by means of capacitance measurement. IEEE Trans. Instrum. Measur. 49(3), 591–595 (2000)Google Scholar
  20. 20.
    Li, Yi: Manucher soleimani imaging conductive materials with high frequency electrical capacitance tomography. Measurement 46, 3355–3361 (2013)CrossRefGoogle Scholar
  21. 21.
    Sadleiry, R., Foxz, R.: Quantification of blood volume by electrical impedance tomography using a tissue-equivalent phantom. Physiol. Meas. 19, 501–516 (1998)CrossRefGoogle Scholar
  22. 22.
    Holder, D.S., Khan, A.: Use of polyacrylamide gels in a saline-filled tank to determine the linearity of the Sheffield Mark 1 electrical impedance tomography (EIT) system in measuring impedance disturbances. Physiol. Meas. 15, A45–A50 (1994)CrossRefGoogle Scholar
  23. 23.
    Bera, T.K., Nagaraju, J.: A chicken tissue phantom for studying an electrical impedance tomography (EIT) system suitable for clinical imaging. Sens. Imaging Int. J. 12(3–4), 95–116 (2011)CrossRefGoogle Scholar
  24. 24.
    Kao, T.J., Saulnier, G.J., Isaacson, D., Szabo, T.L., Newell, J.C.: A versatile high-permittivity phantom for EIT. IEEE Trans. Biomed. Eng. 55(11), 2601 (2008)CrossRefGoogle Scholar
  25. 25.
    Wanga, P., Guo, B., Li, N.: Multi-index optimization design for electrical resistance tomography sensor. Measurement 46, 2845–2853 (2013)CrossRefGoogle Scholar
  26. 26.
    Bera, T.K., Nagaraju, J.: A stainless steel electrode phantom to study the forward problem of electrical impedance tomography (EIT). Sens. Transducers J. 104(5), 33–40 (2009)Google Scholar
  27. 27.
    Bera, T.K., Nagaraju. J.: A multifrequency electrical impedance tomography (EIT) system for biomedical imaging. In: IEEE International Conference on Signal Processing and Communications (SPCOM 2012), IISc-Bangalore, India pp. 1–5Google Scholar
  28. 28.
    Bera, T.K., Nagaraju, J.: A simple instrumentation calibration technique for electrical impedance tomography (EIT) using a 16–electrode phantom. In: Proceedings of The Fifth Annual IEEE Conference on Automation Science and Engineering (IEEE CASE 2009), India, 2009, pp. 347–352Google Scholar
  29. 29.
    Bera, T.K., Nagaraju, J.: A study of practical biological phantoms with simple instrumentation for electrical impedance tomography (EIT). In: Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC2009), Singapore, pp. 511–516, 5th–7th May 2009Google Scholar
  30. 30.
    Robitaille, N., Guardo, R., Maurice, I., Hartinger, A.E., Gagnon, H.: A multi-frequency EIT system design based on telecommunication signal processors. Physiol. Meas. 30, S57–S71 (2009)CrossRefGoogle Scholar
  31. 31.
    Goharian, M., Soleimani, M., Jegatheesan, A., Chin, K., Moran, G.R.: A DSP based multi-frequency 3D electrical impedance tomography system. Ann. Biomed. Eng. 36, 1594–1603 (2008)CrossRefGoogle Scholar
  32. 32.
    Oh, T.I., Koo, H., Lee, K.H., Kim, S.M., Lee, J., Kim, S.W., Seo, J.K., Woo, E.J.: Validation of a multi-frequency electrical impedance tomography (mfEIT) system KHU Mark1: impedance spectroscopy and time-difference imaging. Physiol. Meas. 29, 295–307 (2008)CrossRefGoogle Scholar
  33. 33.
    Jennings, D., Schneider, I.D.: Front-end architecture for a multifrequency electrical impedance tomography system. Med. Biol. Eng. Compu. 39(3), 368–374 (2001)CrossRefGoogle Scholar
  34. 34.
    Mohamadou, Y., Oh, T.I., Wi, H., Sohal, H., Farooq, A., Woo, E. J., McEwan, A.: Performance evaluation of wideband bio-impedance spectroscopy using constant voltage source and constant current source. Meas. Sci. Technol. 23(10), 105703 (2012)Google Scholar
  35. 35.
    Ross, A.S., Saulnier, G.J., Newell, J.C., Isaacson, D.: Current source design for electrical impedance tomography. Physiol. Meas. 24, 509–516 (2003)CrossRefGoogle Scholar
  36. 36.
    Lee, J.W., Oh, T.I., Paek, S.M., Lee, J.S., Woo, E.J.: Precision constant current source for electrical impedance tomography. In: Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, pp. 1066–1069 (2003)Google Scholar
  37. 37.
    Gnecchi, J.A.G.: Voltage controlled current source (VCCCS) for electrical impedance tomography (EIT) measurements in the α and β dispersion frequency ranges. In: 2010 Electronics, Robotics and Automotive Mechanics Conference, pp. 677–681Google Scholar
  38. 38.
    Bera, T.K., Nagaraju, J.: A multifrequency constant current source suitable for electrical impedance tomography (EIT). In: Proceedings of 2010 International Conference on Systems in Medicine and Biology. IIT Kharagpur, India, pp. 278–283, 16–18 Dec 2010Google Scholar
  39. 39.
    Silverio, E.A.A., Silverio, E.A.A.: A high output impedance current source for wideband bioimpedance spectroscopy using 0.35 μm Tsmc Cmos technology. Int. J. Eng. Appl. Sci. 1(2), 68–75 (2012)Google Scholar
  40. 40.
    Corrêa Alegria, F., Martinho, E., Almeidac, F.: Measuring soil contamination with the time domain induced polarization method using LabVIEW. Measurement 42, 1082–1091 (2009)CrossRefGoogle Scholar
  41. 41.
    Morse D.H., Antolak A.J., Bench G.S., Roberts M.L.: A flexible LabVIEWTM-based data acquisition and analysis system for scanning microscopy. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact Mate Atoms, 158(1), 146–152(7) (2 Sept 1999)Google Scholar
  42. 42.
    D’Mello, P.C., D’Souza, S.: Design and development of a virtual instrument for bio-signal acquisition and processing using LabVIEW. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 1(1), 1–9 (2012)Google Scholar
  43. 43.
    Sumathi, S., Surekha, P.: LabVIEW Based Advanced Instrumentation Systems, 1st edn. Springer, Berlin (2007)Google Scholar
  44. 44.
    Czerwinski, F., Oddershede, L.B.: TimeSeriesStreaming.vi: LabVIEW program for reliable data streaming of large analog time series. Comput. Phys. Commun. 182, 485–489 (2011)CrossRefMATHGoogle Scholar
  45. 45.
    Bo, L., Liu, X., He, X.: Measurement system for wind turbines noises assessment based on LabVIEW. Measurement 44, 445–453 (2011)CrossRefGoogle Scholar
  46. 46.
    Wang, Z., Shang, Y., Liu, J., Xidong, W.: A LabVIEW based automatic test system for sieving chips. Measurement 46(1), 402–410 (2013)CrossRefGoogle Scholar
  47. 47.
    Giannone, L., Eich, T., Fuchs, J.C., Ravindran, M., Ruan, Q., Wenzel, L., Cernaa, M., Concezzi, S.: Data acquisition and real-time bolometer tomography using LabVIEW RT. Fusion Eng. Des. 86, 1129–1132 (2011)CrossRefGoogle Scholar
  48. 48.
    Yue, X., Drakakis, E.M., Lim, M., Radomska, A., Ye, H., Mantalaris, A., Panoskaltsis, N., Cass, A.: A real-time multi-channel monitoring system for stem cell culture process. IEEE Trans. Biomed. Circuits Syst. 2(2), 66–77 (2008)CrossRefGoogle Scholar
  49. 49.
    Fontenot, R.S., Hollermana, W.A., Aggarwal, M.D., Bhat, K.N., Goedekea, S.M.: A versatile low-cost laboratory apparatus for testing triboluminescent materials. Measurement 45, 431–436 (2012)CrossRefGoogle Scholar
  50. 50.
    Andrei, H., Dogaru-Ulieru, V., Chicco, G., Cepisca, C., Spertino, F.: Photovoltaic applications. J. Mater. Process. Technol. 181, 267–273 (2007)CrossRefGoogle Scholar
  51. 51.
    Ni, J.-Q., Heber, A.J.: An on-site computer system for comprehensive agricultural air quality research. Comput. Electron. Agric. 71, 38–49 (2010)CrossRefGoogle Scholar
  52. 52.
    Ruiz, M., L′opez, J.M., de Arcas, G., Barrera, E., Melendez, R., Vega, J.: Data reduction in the ITMS system through a data acquisition model with self-adaptive sampling rate. Fusion Eng. Des. 83, 358–362 (2008)CrossRefGoogle Scholar
  53. 53.
    Mekida, S., Vacharanukul, K.: In-process out-of-roundness measurement probe for turned work pieces. Measurement 44, 762–766 (2011)CrossRefGoogle Scholar
  54. 54.
    Giannone, L., et al.: Data acquisition and real-time signal processing of plasma diagnostics on ASDEX upgrade using LabVIEW RT. Fusion Eng. Des. 85, 303–307 (2010)CrossRefGoogle Scholar
  55. 55.
    Ionel, R., Vasiu, G., Mischie, S.: GPRS based data acquisition and analysis system with mobile phone control. Measurement 45, 1462–1470 (2012)CrossRefGoogle Scholar
  56. 56.
    Bera, T.K., Nagaraju, J, Studying the 2D resistivity reconstruction of stainless steel electrode phantoms using different current patterns of electrical impedance tomography (EIT). In: Biomedical Engineering, Narosa Publishing House, Proceeding of the International Conference on Biomedical Engineering 2011 (ICBME-2011), India, 2011, pp. 163–69Google Scholar
  57. 57.
    Bera, T.K., Nagaraju, J.: Studying the resistivity imaging of chicken tissue phantoms with different current patterns in electrical impedance tomography (EIT). Measurement 45, 663–682 (2012)CrossRefGoogle Scholar
  58. 58.
    Malmivuo, J., Plonsey, R.: Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York (1995)CrossRefGoogle Scholar
  59. 59.
    Polydorides, N., Lionheart, W.R.B.: A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas. Sci. Technol. 13, 1871–1883 (2002)CrossRefGoogle Scholar
  60. 60.
    Vauhkonen, M., Lionheart, W.R.B., Heikkinen, L.M., Vauhkonen, P.J., Kaipio, J.P.: A MATLAB package for the EIDORS project to reconstruct two dimensional EIT images. Physiol. Meas. 22(107), 111 (2001)Google Scholar
  61. 61.
    Mekida, S., Vacharanukul, K.: In-process out-of-roundness measurement probe for turned workpieces. Measurement 44, 762–766 (2011)CrossRefGoogle Scholar
  62. 62.
    Data Sheet, NI USB 6251 OEM, High-Speed M Series Multifunction Data Acquisition (DAQ) Module, National Instruments, USAGoogle Scholar
  63. 63.
    Data Sheet, NI SCB68, Shielded I/O Connector Block, National Instruments, USAGoogle Scholar
  64. 64.
    Data Sheet, CD4067BE IC, CMOS Analog Multiplesers/Demultiplexers, Texas Instruments Inc., USA (2012)Google Scholar
  65. 65.
    Bera, T.K., Nagaraju, J.: Surface electrode switching of a 16-electrode wireless EIT system using RF-based digital data transmission scheme with 8 channel encoder/decoder ICs. Measurement 45, 541–555 (2012)CrossRefGoogle Scholar
  66. 66.
    Cheng, K.S., Simske, S.J., Isaacson, D., Newell, J.C., Gisser, D.G.: Errors due to measuring voltage on current-carrying electrodes in electric current computed tomography. IEEE Trans. Biomed. Eng. 37(60), 60–65 (1990)CrossRefGoogle Scholar
  67. 67.
    Rosell, J., Riu, P.: Common-mode feedback in electrical impedance tomography. Clin. Phys. Physiol. Meas. 13(Suppl. 4), 11–14 (1992)CrossRefGoogle Scholar
  68. 68.
    Rahal, M., Rida, I., Usman, M., Demosthenous, A.: New techniques to reduce the common-mode signal in multi-frequency EIT applications. In: PIERS Proceedings, Marrakesh, MOROCCO, pp. 1598–1601 (20–23 March 2011)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of Instrumentation and Applied PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations