Skip to main content

2D Simulation of Static Interface States in GaN HEMT with AlN/GaN Super-Lattice as Barrier Layer

  • 1618 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 250)

Abstract

In this paper, two-dimensional simulation of interface charge effects in GaN-based high-electron-mobility transistors (HEMT) with AlN/GaN super-lattice (SL) device is performed. Charges of different polarity and magnitude are introduced in the interface, and their relative modification of drain current is studied. We have found that drain current has very different response to positive and negative charges of equal magnitude. Free hole accumulation at the interface is considered to give raise to different sensitivity for positive and negative interface charges. We have also investigated the drain current response for changed SL period thickness and equivalent Al composition of the quasi-alloy with different interface charge. The implication of our study in current collapse and related dispersion effects is discussed.

Keywords

  • GaN HEMT
  • AlN/GaN super-lattice barrier
  • Interface states
  • Current collapse

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-81-322-1695-7_53
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-81-322-1695-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Meneghesso, G., Chini, A., Zanoni, E., Manfredi, M., Pavesi, M., Boudart, B., Gaquiere, C.: Diagnosis of trapping phenomena in GaN MESFETs. In: IEDM Technical Digest, pp. 389–392 (2000)

    Google Scholar 

  2. Hasumi, Y., Kodera, H.: Simulation of the surface trap effect on the gate lag in GaAs MESFETs. Electron. Commun. Jpn. 85(2), 18–26 (2002)

    Google Scholar 

  3. Tirado, J.M., Sanchez-Rojas, J.L., Izpura, J.I.: 2-D simulation of static surface states in AlGaN/GaN HEMT and GaN MESFET devices. Semicond. Sci. Technol. 20(8), 864–869 (2005)

    CrossRef  Google Scholar 

  4. Trassaert, S., Boudart, B., Gaquiére, C., Théron, Y., Crosnier, Y., Huet, F., Poisson, M.A.: Trap effects studies in GaN MESFETs by pulsed measurements. Electron. Lett. 35(16), 1386–1388 (1999)

    CrossRef  Google Scholar 

  5. Klein, P.B., Freitas, J.A., Binari, S.C., Wickenden, A.E.: Observation of deep traps responsible for current collapse in GaN metal–semiconductor field-effect transistors. Appl. Phys. Lett. 75(25), 4016–4018 (1999)

    CrossRef  Google Scholar 

  6. Vetury, R., Zhang, N.Q., Keller, S., Mishra, U.K.: The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. Electron Devices 48(3), 560–566 (2001)

    CrossRef  Google Scholar 

  7. Kruppa, W., Binari, S.C., Dovespike, K.: Low-frequency dispersion characteristics of GaN HFETs. Electron. Lett. 31(22), 1951–1952 (1995)

    CrossRef  Google Scholar 

  8. Binari, S.C., Klein, P.B., Kazior, T.E.: Trapping effects in GaN and SiC microwave FETs. Proc. IEEE 90(6), 1048–1058 (2002)

    CrossRef  Google Scholar 

  9. Binari, S.C., Ikossi, K., Roussos, J.A., Kruppa, W., Park, D., Dietrich, H.B., Koleske, D.D., Wickenden, A.E., Henry, R.L.: Trapping effects and microwave power performance in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 48(3), 465–471 (2001)

    CrossRef  Google Scholar 

  10. Smorchkova, I.P., Chen, L., Mates, T., Shen, L., Heikman, S., Moran, B., Keller, S., DenBaars, S.P., Speck, J.S., Mishra, U.K.: AlN/GaN and (Al, Ga) N/AlN/GaN two dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 90, 5196–5201 (2001)

    CrossRef  Google Scholar 

  11. Kawakami, Y., Nakajima, A., Shen, X.Q., Piao, G., Shimizu, M.: Improved electrical properties in AlGaN/GaN heterostructures using AlN/GaN superlattice as a quasi-AlGaN barrier. Appl. Phys. Lett. 90, 242112 (2007)

    CrossRef  Google Scholar 

  12. Xu, P., Jiang, Y., Chen, Y., Ma, Z., Wang, X., Deng, Z., Li, Y., Jia, H., Wang, W., Chen, H.: Analyses of 2-DEG characteristics in GaN HEMT with AlN/GaN super-lattice as barrier layer grown by MOCVD. Nanoscale Res. Lett. 7, 141 (2012)

    CrossRef  Google Scholar 

  13. Khan, M.A., Shur, M.S., Chen, Q.C., Kuznia, J.N.: Current–voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias. Electron. Lett. 30(25), 2175–2176 (1994)

    CrossRef  Google Scholar 

  14. Klein, P.B., Binari, S.C., Ikossi-Anastasiou, K., Wickenden, A.E., Koleske, D.D., Henry, R.L., Katzer, D.S.: Investigation of traps producing current collapse in AlGaN/GaN high electron mobility transistors. Electron. Lett. 37(10), 661–662 (2001)

    CrossRef  Google Scholar 

  15. Klein, P.B., Binari, S.C., Ikossi, K., Wickenden, A.E., Koleske, D.D., Henry, R.L.: Current collapse and the role of carbon in AlGaN/GaN high electron mobility transistors grown by metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 79(21), 3527–3529 (2001)

    CrossRef  Google Scholar 

  16. Ibbetson, J.P., Fini, P.T., Ness, K.D., DenBaars, S.P., Speck, J.S., Mishra, U.K.: Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 77(2), 250–252 (2000)

    CrossRef  Google Scholar 

  17. Verzellesi, G., Pierobon, R., Rampazzo, F., Meneghesso, G., Chini, A., Mishra, U.K., Canali, C., Zanoni, E.: Experimental/numerical investigation on current collapse in AlGaN/GaN HEMT’s. In: IEDM Technical Digest, pp. 689–692 (2002)

    Google Scholar 

  18. Tirado, J.M., Rojas, J.L.S., Izpura, J.I.: Trapping effects in the transient response of AlGaN/GaN HEMT devices. IEEE Trans. Electron Devices 54(3), 410–417 (2007)

    CrossRef  Google Scholar 

  19. Zhang, W., Zhang, Y., Mao, W., Ma, X., Zhang, J., Hao, Y.: Influence of the interface acceptor-like traps on the transient response of AlGaN/GaN HEMTs. IEEE Electron Device Lett. 34(1), 45–47 (2013)

    CrossRef  Google Scholar 

  20. Device Simulator Atlas Ver. 5.10.0.R. Atlas User’s Manual, Silvaco Int., Santa Clara, CA (2005)

    Google Scholar 

  21. Farahmand, M., Garetto, C., Bellotti, E., Brennan, K.F., Goano, M., Ghillino, E., Ghione, G., Albrecht, J.D., Ruden, P.P.: Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries. IEEE Trans. Electron Devices 48(3), 535–542 (2001)

    CrossRef  Google Scholar 

  22. Chini, A., Lecce, V.D., Esposto, M., Meneghesso, G.: Evaluation and numerical simulation of GaN HEMTs electrical degradation. IEEE Elec. Device Lett. 30(10), 1021–1023 (2009)

    CrossRef  Google Scholar 

  23. Tirado, J.M., Rojas, J.L.S., Izpura, J.I.: Simulation of surface state effects in the transient response of AlGaN/GaN HEMT and GaN MESFET devices. Semicond. Sci. Technol. 21, 1150–1159 (2006)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imtiaz Alamgir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Alamgir, I., Rahman, A. (2014). 2D Simulation of Static Interface States in GaN HEMT with AlN/GaN Super-Lattice as Barrier Layer. In: Patnaik, S., Li, X. (eds) Proceedings of International Conference on Soft Computing Techniques and Engineering Application. Advances in Intelligent Systems and Computing, vol 250. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1695-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1695-7_53

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1694-0

  • Online ISBN: 978-81-322-1695-7

  • eBook Packages: EngineeringEngineering (R0)