Skip to main content

Nanoparticulate Formulations for Pesticide Applications

  • Chapter
  • First Online:
Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

The following sections give details of the nanoparticulate formulation developed by various researchers. The innovative technology to formulate the nanoparticle is briefly discussed along the entrapment strategies. Few biological models for testing the efficacy of these developed formulations on insect model have also been included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad P, Gouzy J, Aury J-M, Castagnone-Sereno P, Danchin EG, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26(8):909–915

    Article  CAS  Google Scholar 

  • Ahmad SN, Islam MT, Abdullah DK, Omar D (2012) Evaluation of physicochemical characteristics of microemulsion formulation of rotenone and its insecticidal efficacy against Plutella xylostella L.(Lepidoptera: Plutellidae). Food, Agriculture and Environment (JFAE) 10(3&4):384–388

    Google Scholar 

  • Amrhein N, Schab J, Steinrücken H (1980) The mode of action of the herbicide glyphosate. Naturwissenschaften 67(7):356–357

    Article  CAS  Google Scholar 

  • Anees AM (2008) Larvicidal activity of Ocimum sanctum Linn. (Labiatae) against Aedes aegypti (L.) and Culex quinquefasciatus (Say). Parasitol Res 103(6):1451–1453

    Article  Google Scholar 

  • Anjali CH, Sudheer Khan S, Margulis-Goshen K, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73(8):1932–1936

    Article  CAS  Google Scholar 

  • Bentley MD, Hassanali A, Lwande W, Njoroge PEW, Sitayo ENO, Yatagai M (1987) Insect antifeedants from Tephrosia elata Deflers. Int J Trop Insect Sci 8(01):85–88. doi:10.1017/S1742758400007025

    Article  CAS  Google Scholar 

  • Chaw Jiang L, Basri M, Omar D, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RNZ, Selamat A (2012) Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pestic Biochem Physiol 102(1):19–29. doi:10.1016/j.pestbp.2011.10.004

  • Chhetri AB, Tango MS, Budge SM, Watts KC, Islam MR (2008) Non-edible plant oils as new sources for biodiesel production. Int J Mol Sci 9(2):169–180

    Article  CAS  Google Scholar 

  • Choudhury SR, Pradhan S, Goswami A (2012) Preparation and characterisation of acephate nano-encapsulated complex. Nanosci Meth 1(1):9–15

    Article  CAS  Google Scholar 

  • Cognis G (2007) Agnique PG www.cognis.com. Accessed 2 May 2013

  • Crombie L (1999) Natural product chemistry and its part in the defence against insects and fungi in agriculture. Pestic Sci 55(8):761–774. doi:10.1002/(sici)1096-9063(199908)55:8<761:aid-ps26>3.0.co;2-2

    Article  CAS  Google Scholar 

  • European-Pharmacopoeia (2005) European Pharmacopoeia vol 5.0. Convention on the Elaboration of a European Pharmacopoeia. Council of Europe

    Google Scholar 

  • EXTOXNET (1995) Pesticide Information Profile: Azadirachtin. http://pmep.cce.cornell.edu/profiles/extoxnet/24d-captan/azadirachtin-ext.html#4. Accessed 2 May 2013

  • Fradin MS, Day JF (2002) Comparative efficacy of insect repellents against mosquito bites. N Engl J Med 347(1):13–18. doi:10.1056/NEJMoa011699

    Article  CAS  Google Scholar 

  • Guadaño A, Gutiérrez C, de la Peña E, Cortes D, González-Coloma A (2000) Insecticidal and mutagenic evaluation of two Annonaceous Acetogenins. J Nat Prod 63(6):773–776. doi:10.1021/np990328+

    Article  Google Scholar 

  • Hemsley AR, Poole I (2004) The evolution of plant physiology, vol 21. Elsevier

    Google Scholar 

  • Hu M, Zhong G, Sun ZT, Sh G, Liu H, Liu X (2005) Insecticidal activities of secondary metabolites of endophytic Pencillium sp. in Derris elliptica Benth. J Appl Entomol 129(8):413–417

    Article  CAS  Google Scholar 

  • Hunsche M, Damerow L, Schmitz-Eiberger M, Noga G (2007) Mancozeb wash-off from apple seedlings by simulated rainfall as affected by drying time of fungicide deposit and rain characteristics. Crop Prot 26(5):768–774

    Article  CAS  Google Scholar 

  • Ichwan AM, Karimi M, Dash AK (1999) Use of gelatin–acacia coacervate containing benzocaine in topical formulations. J Pharm Sci 88(8):763–766

    Article  CAS  Google Scholar 

  • Jiang LC, Basri M, Omar D, Rahman MBA, Salleh AB, Rahman RNZRA (2011) physicochemical characterization of nonionic surfactants in oil-in-water (O/W) nano-emulsions for new pesticide formulations. Int J Appl Sci Technol 1(5)

    Google Scholar 

  • Koundal K, Rajendran P (2003) Plant insecticidal proteins and their potential for developing transgenics resistant to insect pests. Indian J Biotechnol 2(1):110–120

    CAS  Google Scholar 

  • Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45(1):89–121. doi:10.1016/S0169-409X(00)00103-4

    Article  CAS  Google Scholar 

  • Lee JB, Lee SH (2011) Dynamic wetting and spreading characteristics of a liquid droplet impinging on hydrophobic textured surfaces. Langmuir 27(11):6565–6573. doi:10.1021/la104829x

    Article  CAS  Google Scholar 

  • Li H, Geng S (2013) Development and characterization of microsatellite markers for Derris elliptica (Fabaceae), an insecticide-producing plant. Sci Hortic 154:54–60. doi:10.1016/j.scienta.2013.02.026

    Article  CAS  Google Scholar 

  • Li Z-Z, Xu S-A, Wen L-X, Liu F, Liu A-Q, Wang Q, Sun H-Y, Yu W, Chen J-F (2006) Controlled release of avermectin from porous hollow silica nanoparticles: Influence of shell thickness on loading efficiency, UV-shielding property and release. J Controlled Release 111(1–2):81–88. doi:10.1016/j.jconrel.2005.10.020

    Article  CAS  Google Scholar 

  • Li Z-Z, Chen J-F, Liu F, Liu A-Q, Wang Q, Sun H-Y, Wen L-X (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63(3):241–246. doi:10.1002/ps.1301

    Article  CAS  Google Scholar 

  • Lim CJ, Basri M, Omar D, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RNZ (2012) Physicochemical characterization and formation of glyphosate-laden nano-emulsion for herbicide formulation. Ind Crops Prod 36(1):607–613. doi:10.1016/j.indcrop.2011.11.005

    Article  CAS  Google Scholar 

  • Lim CJ, Basri M, Omar D, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RNZ (2013) Green nanoemulsion-laden glyphosate isopropylamine formulation in suppressing creeping foxglove (A. gangetica), slender button weed (D. ocimifolia) and buffalo grass (P. conjugatum). Pest Manage Sci 69(1):104–111. doi:10.1002/ps.3371

  • Liu H, Cupp EW, Micher KM, Guo A, Liu N (2004) Insecticide resistance and cross-resistance in Alabama and Florida strains of Culex quinquefaciatus. J Med Entomol 41(3):408–413

    Article  CAS  Google Scholar 

  • Liu F, Wen L-X, Li Z-Z, Yu W, Sun H-Y, Chen J-F (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275

    Article  CAS  Google Scholar 

  • Liu Y, Wei F, Wang Y, Zhu G (2011) Studies on the formation of bifenthrin oil-in-water nano-emulsions prepared with mixed surfactants. Colloids Surf, A 389(1–3):90–96. doi:10.1016/j.colsurfa.2011.08.045

    Article  CAS  Google Scholar 

  • Maia MF, Moore SJ (2011) Plant-based insect repellents: a review of their efficacy, development and testing. Malar J 10(Suppl 1):S11

    Article  CAS  Google Scholar 

  • Malmsten M (2002) Surfactants and polymers in drug delivery, vol 122. Drugs and the pharmaceutical sciences. Marcel Dekker, Inc, New York

    Google Scholar 

  • Masmoudi H, Piccerelle P, Le Dréau Y, Kister J (2006) A rheological method to evaluate the physical stability of highly viscous pharmaceutical oil-in-water emulsions. Pharm Res 23(8):1937–1947

    Article  CAS  Google Scholar 

  • Matsui T, Ito C, Furukawa H, Okada T, Itoigawa M (2013) Lansiumamide B and SB-204900 isolated from Clausena lansium inhibit histamine and TNF-α release from RBL-2H3 cells. Inflamm Res 62(3):333–341. doi:10.1007/s00011-012-0586-8

    Article  CAS  Google Scholar 

  • Metcalf RL (1948) The mode of action of organic insecticides, vol 1–5. National Academies

    Google Scholar 

  • Mohibbe Azam M, Waris A, Nahar NM (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy 29(4):293–302. doi:10.1016/j.biombioe.2005.05.001

    Article  CAS  Google Scholar 

  • Nawrot J, Harmatha J, Kostova I, Ognyanov I (1989) Antifeeding activity of rotenone and some derivatives towards selected insect storage pests. Biochem Syst Ecol 17(1):55–57. doi:10.1016/0305-1978(89)90043-4

    Article  CAS  Google Scholar 

  • Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Bioresour Technol 101(1):372–378. doi:10.1016/j.biortech.2009.07.048

    Article  CAS  Google Scholar 

  • Nisbet AJ (2000) Azadirachtin from the neem tree Azadirachta indica: its action against insects. Anais da Sociedade Entomológica do Brasil 29(4):615–632

    Article  Google Scholar 

  • Oka Y, Shuker S, Tkachi N (2009) Nematicidal efficacy of MCW-2, a new nematicide of the fluoroalkenyl group, against the root-knot nematode Meloidogyne javanica. Pest Manag Sci 65(10):1082–1089. doi:10.1002/ps.1796

    Article  CAS  Google Scholar 

  • Patravale V, Kulkarni R (2004) Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 56(7):827–840

    Article  CAS  Google Scholar 

  • Peng L-C, Liu C-H, Kwan C-C, Huang K-F (2010) Optimization of water-in-oil nanoemulsions by mixed surfactants. Colloids Surf, A 370(1–3):136–142. doi:10.1016/j.colsurfa.2010.08.060

    Article  CAS  Google Scholar 

  • Pereira F, Moreira C, Fonseca L, van Asch B, Mota M, Abrantes I, Amorim A (2013) New insights into the phylogeny and worldwide dispersion of two closely related nematode species, Bursaphelenchus xylophilus and Bursaphelenchus mucronatus. PLoS ONE 8(2):e56288. doi:10.1371/journal.pone.0056288

    Article  CAS  Google Scholar 

  • Perkins M, Bell G, Briggs D, Davies M, Friedman A, Hart C, Roberts C, Rutten F (2008) The application of ToF-SIMS to the analysis of herbicide formulation penetration into and through leaf cuticles. Colloids Surf, B 67(1):1–13

    Article  CAS  Google Scholar 

  • Pey CM, Maestro A, Solé I, González C, Solans C, Gutiérrez JM (2006) Optimization of nano-emulsions prepared by low-energy emulsification methods at constant temperature using a factorial design study. Colloids Surf, A 288(1–3):144–150. doi:10.1016/j.colsurfa.2006.02.026

    Article  CAS  Google Scholar 

  • Pradhan S, Roy I, Lodh G, Patra P, Choudhury SR, Samanta A, Goswami A (2013) Entomotoxicity and biosafety assessment of PEGylated acephate nanoparticles: A biologically safe alternative to neurotoxic pesticides. J Environ Sci Health, Part B 48(7):559–569

    Article  CAS  Google Scholar 

  • Pratap AP, Bhowmick D (2008) Pesticides as microemulsion formulations. J Dispersion Sci Technol 29(9):1325–1330

    Article  CAS  Google Scholar 

  • Prince LM (1975) Microemulsions versus micelles. J Colloid Interface Sci 52(1):182–188. doi:10.1016/0021-9797(75)90315-X

    Article  CAS  Google Scholar 

  • Putter I, Mac Connell J, Preiser F, Haidri A, Ristich S, Dybas R (1981) Avermectins: novel insecticides, acaricides and nematicides from a soil microorganism. Experientia 37(9):963–964

    Article  CAS  Google Scholar 

  • Raizada RB, Srivastava MK, Kaushal RA, Singh RP (2001) Azadirachtin, a neem biopesticide: subchronic toxicity assessment in rats. Food Chem Toxicol 39(5):477–483. doi:10.1016/S0278-6915(00)00153-8

    Article  CAS  Google Scholar 

  • Rane SS, Anderson BD (2008) What determines drug solubility in lipid vehicles: is it predictable? Adv Drug Deliv Rev 60(6):638–656. doi:10.1016/j.addr.2007.10.015

    Article  CAS  Google Scholar 

  • Reddy KN, Singh M (1992) Organosilicone adjuvants increased the efficacy of glyphosate for control of weeds in citrus (Citrus spp.). HortScience 27(9):1003–1005

    CAS  Google Scholar 

  • Reichenberger S, Bach M, Skitschak A, Frede H-G (2007) Mitigation strategies to reduce pesticide inputs into ground-and surface water and their effectiveness: a review. Sci Total Environ 384(1):1–35

    Article  CAS  Google Scholar 

  • Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 372(1–2):105–111. doi:10.1016/j.ijpharm.2008.12.029

    Article  CAS  Google Scholar 

  • Schulman JH, Stoeckenius W, Prince LM (1959) Mechanism of formation and structure of micro emulsions by electron microscopy. J Phys Chem 63(10):1677–1680. doi:10.1021/j150580a027

    Article  CAS  Google Scholar 

  • Sharma S, Singh M (2000) Optimizing foliar activity of glyphosate on Bidens frondosa and Panicum maximum with different adjuvant types. Weed Res 40(6):523–533

    Article  CAS  Google Scholar 

  • Singla M, Patanjali PK (2013) Phase behaviour of neem oil based microemulsion formulations. Ind Crops Prod 44:421–426. doi:10.1016/j.indcrop.2012.10.016

    Article  CAS  Google Scholar 

  • Song S, Liu X, Jiang J, Qian Y, Zhang N, Wu Q (2009) Stability of triazophos in self-nanoemulsifying pesticide delivery system. Colloids Surf, A 350(1–3):57–62. doi:10.1016/j.colsurfa.2009.08.034

    Article  CAS  Google Scholar 

  • Steinrücken H, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94(4):1207–1212

    Article  Google Scholar 

  • Talegaonkar S, Azeem A, Ahmad FJ, Khar RK, Pathan SA, Khan ZI (2008) Microemulsions: a novel approach to enhanced drug delivery. Recent Pat Drug Delivery Formulation 2(3):238–257

    Article  CAS  Google Scholar 

  • Tamhane VA, Chougule NP, Giri AP, Dixit AR, Sainani MN, Gupta VS (2005) In vivo and in vitro effect of Capsicum annum proteinase inhibitors on Helicoverpa armigera gut proteinases. Biochimica et Biophysica Acta (BBA)—General Subjects 1722(2):156–167. doi:10.1016/j.bbagen.2004.12.017

    Google Scholar 

  • Tamhane VA, Dhaware DG, Khandelwal N, Giri AP, Panchagnula V (2012) Enhanced permeation, leaf retention and plant protease inhibitor activity with bicontinuous microemulsions. J Colloid Interface Sci

    Google Scholar 

  • Tomlin CDS (2000) The pesticide manual. BCPC, Farnham

    Google Scholar 

  • Trongtokit Y, Rongsriyam Y, Komalamisra N, Apiwathnasorn C (2005) Comparative repellency of 38 essential oils against mosquito bites. Phytotherapy Res 19(4):303–309. doi:10.1002/ptr.1637

    Article  CAS  Google Scholar 

  • Tuffi Santos LD, Meira RMSA, Ferreira FA, Sant’Anna-Santos BF, Ferreira LR (2007) Morphological responses of different eucalypt clones submitted to glyphosate drift. Environ Exp Bot 59(1):11–20

    Article  CAS  Google Scholar 

  • USEPA-OPP (2009) Cold Pressed Neem Oil PC Code 025006. U.S. Environmental Protection Agency Office of Pesticide Programs. http://www.epa.gov/opp00001/chem_search/reg_actions/registration/decision_PC-025006_14-Oct-09.pdf. Accessed 5 June 2013

  • Vadillo DC, Soucemarianadin A, Delattre C, Roux DCD (2009) Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces. Phys Fluids 21(12):122002–122008

    Article  Google Scholar 

  • Wang C, Liu Z (2007) Foliar uptake of pesticides—present status and future challenge. Pestic Biochem Physiol 87(1):1–8

    Article  Google Scholar 

  • Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314(1):230–235

    Article  CAS  Google Scholar 

  • Wheeler GS, Slansky F, Yu SJ (2001) Food consumption, utilization and detoxification enzyme activity of larvae of three polyphagous noctuid moth species when fed the botanical insecticide rotenone. Entomol Exp Appl 98(2):225–239. doi:10.1046/j.1570-7458.2001.00778.x

    Article  CAS  Google Scholar 

  • Yin Y-H, Guo Q-M, Han Y, Wang L-J, Wan S-Q (2012) Preparation, characterization and nematicidal activity of lansiumamide B nano-capsules. J Integr Agric 11(7):1151–1158

    Article  CAS  Google Scholar 

  • Zhang L, Han J-J, Li J-J, Liu T-Q (2013) Properties and spreading kinetics of water-based cypermethrin microemulsions. Acta Phys Chim Sin 29(2):346–350

    Google Scholar 

  • Zhu Y, An X, Li S, Yu S (2009) Nanoencapsulation of β-cypermethrin by complex coacervation in a microemulsion. J Surfactants Deterg 12(4):305–311

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab De .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

De, A., Bose, R., Kumar, A., Mozumdar, S. (2014). Nanoparticulate Formulations for Pesticide Applications. In: Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles. SpringerBriefs in Molecular Science. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1689-6_11

Download citation

Publish with us

Policies and ethics