Skip to main content

Abstract

In recent years, a number of reports have linked epigenetics and ovarian stimulation to human-assisted reproductive techniques (ART). These reports have alluded to the fact that the pathological causes of diseases such as Beckwith-Wiedemann syndrome (BWS-OMM #130650) and Angelman syndrome (AS-OMIM #105830) may be associated with epigenetic disruption of chromosomal regions, or epimutations, as a consequence of defective DNA methylation status of imprinted genes. The acquisition of a unique epigenetic profile in a small subset of genes in the male and female germlines is time specific during the development of gametes. It involves a well-orchestrated expression of enzymes. Three important mechanisms that are involved in the imprinting process include DNA methylation, posttranslational modification of histone proteins, and remodeling of chromatin and RNA-based mechanisms. Genomic imprinting once established in the germline must remain unaltered following fertilization of these gametes and throughout the life of the offspring. This observation raises possibility for ART-induced epigenetic disturbance during the maintenance of these imprints in early embryonic life. How genomic imprinting may be influenced by ovarian stimulation is explored here. These differential epigenetic marks in the gametes result in a parent-of-origin-specific expression of these imprinted genes in the offspring. Based on the mouse model and limited ART human observations, the consequences of dose-dependent hormonal superovulation and how it may affect the genomic imprinting are discussed. The mechanisms involved in epigenetic deregulation and reprogramming of gametes as well as early embryos are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, et al; International Committee for Monitoring Assisted ReproductiveTechnology (ICMART) and the World Health Organization (WHO). International Committee for Monitoring Assisted ReproductiveTechnology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil Steril. 2009;92(5):1520–4.

    Google Scholar 

  2. Maher ER. Imprinting and assisted reproductive technology. Hum Mol Genet. 2005;14(1):R133–8.

    Article  CAS  PubMed  Google Scholar 

  3. Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod. 2000;62(6):1526–35.

    Article  CAS  PubMed  Google Scholar 

  4. Khosla S, Dean W, Brown D, Reik W, Feil R. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod. 2001;64(3):918–26.

    Article  CAS  PubMed  Google Scholar 

  5. Zaitseva I, Zaitsev S, Alenina N, Bader M, Krivokharchenko A. Dynamics of DNA demethylation in early mouse and rat embryos developed in vivo and in vitro. Mol Reprod Dev. 2007;74(10):1255–61.

    Article  CAS  PubMed  Google Scholar 

  6. DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet. 2003;72(1):156–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the Abnormal imprinting of the KCN1OT gene. Am J Hum Genet. 2003;72(5):1338–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Halliday J, Oke K, Breheny S, Algar E, Amor DJ. Beckwith-Wiedemann syndrome and IVF: a case-control study. Am J Hum Genet. 2004;75(3):526–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ludwig H. Archives of gynecology and obstetrics: 135 years. Arch Gynecol Obstet. 2005;271(1):1–5.

    Article  PubMed  Google Scholar 

  10. Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, et al. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet. 2003;40(1):62–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Cox GF, Burger J, Lip V, Mau UA, Sperling K, Wu BL, Horsthemke B. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet. 2002;71(1):162–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Orstavik KH, Eiklid K, van der Hagen CB, Spetalen S, Kierulf K, Skjeldal O. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am J Hum Genet. 2003;72(1):218–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Waddington CH. The epigenotype. 1942. Endeavour. 1942;1:18–20.

    Google Scholar 

  14. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

    Article  CAS  PubMed  Google Scholar 

  15. Swales AK, Spears N. Genomic imprinting and reproduction. Reproduction. 2005;130(4):389–99.

    Article  CAS  PubMed  Google Scholar 

  16. Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6(8):597–610. Review.

    Article  CAS  PubMed  Google Scholar 

  17. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.

    Article  CAS  PubMed  Google Scholar 

  18. Holmes R, Soloway PD. Regulation of imprinted DNA methylation. Cytogenet Genome Res. 2006;113(1–4):122–9.

    Article  CAS  PubMed  Google Scholar 

  19. Lewis A, Reik W. How imprinting centres work. Cytogenet Genome Res. 2006;113(1–4):81–9.

    Article  CAS  PubMed  Google Scholar 

  20. Bird A, Wolffe A. Methylation-induced repression belts, braces, and chromatin. Cell. 1999;99(5):451–4.

    Article  CAS  PubMed  Google Scholar 

  21. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366(6453):362–5.

    Article  CAS  PubMed  Google Scholar 

  22. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–93.

    Article  CAS  PubMed  Google Scholar 

  23. Arnaud PH, Feil R. Epigenetic deregulation of genomic imprinting in human disorders and following assisted reproduction. Birth Defects Res C Embryo Today. 2005;75(2):81–97.

    Article  CAS  PubMed  Google Scholar 

  24. Illingworth R, Kerr A, Desousa D, Jørgensen H, Ellis P, Stalker J, et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol. 2008;6(1), e22.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gibney ER, Nolan CM. Epigenetics and gene expression. Heredity. 2010;105(1):4–13.

    Article  CAS  PubMed  Google Scholar 

  26. Constancia M, Kelsey G, Reik W. Resourceful imprinting. Nature. 2004;432(7013):53–7.

    Article  CAS  PubMed  Google Scholar 

  27. Delcuve GP, Rastegar M, Davie JR. Epigenetic control. J Cell Physiol. 2009;219(2):243–50.

    Article  CAS  PubMed  Google Scholar 

  28. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  CAS  PubMed  Google Scholar 

  29. Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol. 2004;14(14):R546–51.

    Article  CAS  PubMed  Google Scholar 

  30. Mattick JS, Amaral PP, Dinger ME, Mercer TR, Mehler MF. RNA regulation of epigenetic processes. Bioessays. 2009;31(1):51–9.

    Article  CAS  PubMed  Google Scholar 

  31. Calvanese V, Lara E, Kahn A, Fraga MF. The role of epigenetics in aging and age-related diseases. Ageing Res Rev. 2009;8(4):268–76.

    Article  CAS  PubMed  Google Scholar 

  32. Barton SC, Adams CA, Norris ML, Surani MA. Development of gynogenetic and parthenogenetic inner cell mass and trophectoderm tissues in reconstituted blastocysts in the mouse. J Embryol Exp Morphol. 1985;90:267–85.

    CAS  PubMed  Google Scholar 

  33. McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37(1):179–83.

    Article  CAS  PubMed  Google Scholar 

  34. Surani MA, Barton SC, Norris ML. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature. 1984;308(5959):548–50.

    Article  CAS  PubMed  Google Scholar 

  35. Surani MA, Barton SC. Development of gynogenetic eggs in the mouse: implications for parthenogenetic embryos. Science. 1983;222(4627):1034–6.

    Article  CAS  PubMed  Google Scholar 

  36. Barton SC, Surani MA, Norris ML. Role of paternal and maternal genomes in mouse development. Nature. 1984;311(5984):374–6.

    Article  CAS  PubMed  Google Scholar 

  37. Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil Steril. 2009;91(2):305–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Amor DJ, Halliday J. A review of known imprinting syndromes and their association with assisted reproduction technologies. Hum Reprod. 2008;23(12):2826–34.

    Article  PubMed  Google Scholar 

  39. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2(1):21–32.

    Article  CAS  PubMed  Google Scholar 

  40. Morison IM, Ramsay JP, Spencer HG. A census of mammalian imprinting. Trends Genet. 2005;21(8):457–65.

    Article  CAS  PubMed  Google Scholar 

  41. Morison I. Catalogue of Parent of origin effects: Imprinted genes and related effects - parental origin of de novo mutation. Available from: http://www.igc.ac.nz/home.html

  42. Wadhwa PD, Buss C, Entringer S, Swanson JM. Developmental origins of health and disease: a brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med. 2009;27(5):358–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Batcheller A, Maguire M, DeCherney AH, Segars JH. Are there subtle, genome-wide epigenetic alterations in normal offspring conceived from assisted reproductive technologies? Fertil Steril. 2011;96(6):1306–11.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Wilkins-Haug L. Assisted reproductive technology, congenital malformations, and epigenetic disease. Clin Obstet Gynecol. 2008;51(1):96–105.

    Article  PubMed  Google Scholar 

  45. Owen C, Segars J. Imprinting disorders and assisted reproductive technology. Semin Reprod Med. 2009;27(5):417–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Sutcliffe AG, Peters CJ, Bowdin S, Temple K, Reardon W, Wilson L, et al. Assisted reproductive therapies and imprinting disorders—a preliminary British survey. Hum Reprod. 2006;21(4):1009–11.

    Article  CAS  PubMed  Google Scholar 

  47. Chang AS, Moley KH, Wangler M, Feinberg AP, Debaun MR. Association between Beckwith-Wiedemann syndrome and assisted reproductive technology: a case series of 19 patients. Fertil Steril. 2005;83(2):349–54.

    Article  PubMed  Google Scholar 

  48. Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet. 2009;19(1):36–51.

    Article  Google Scholar 

  49. Lucifero D, Mann MR, Bartolomei MS, Trasler JM. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet. 2004;13(8):839–49.

    Article  CAS  PubMed  Google Scholar 

  50. Mann M, Lee S, Doherty A, Verona R, Nolen L, Schultz R, Bartolomei MS. Selective loss of imprinting in the placenta following preimplantation development in culture. Development. 2004;131(15):3727–35.

    Article  CAS  PubMed  Google Scholar 

  51. Rivera RM, Stein P, Weaver J, Mager J, Schultz R, Bartolomei M. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet. 2008;17(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  52. Bocock PN, Aagaard-Tillery K. Animal models of epigenetic inheritance. Semin Reprod Med. 2009;27(5):369–79.

    Article  CAS  PubMed  Google Scholar 

  53. Coan PM, Burton GJ, Ferguson-Smith AC. Imprinted genes in the placenta—a review. Placenta. 2005;26(Suppl A):S10–20.

    Article  PubMed  Google Scholar 

  54. Barker D. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7.

    Article  CAS  PubMed  Google Scholar 

  55. Huntriss J, Picton HM. Epigenetic consequences of assisted reproduction and infertility on the human preimplantation embryo. Hum Fertil. 2008;11(2):85–94.

    Article  CAS  Google Scholar 

  56. Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol. 2005;278(2):440–58.

    Article  CAS  PubMed  Google Scholar 

  57. Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F, et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature. 2008;452(7189):877–81.

    Article  CAS  PubMed  Google Scholar 

  58. Trasler JM. Gamete imprinting: setting epigenetic patterns for the next generation. Reprod Fertil Dev. 2006;18(1–2):63–9.

    Article  PubMed  Google Scholar 

  59. Oda M, Yamagiwa A, Yamamoto S, Nakayama T, Tsumura A, Sasaki H, et al. DNA methylation regulates long-range gene silencing of an X-linked homeobox gene cluster in a lineage-specific manner. Genes Dev. 2006;20(24):3382–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.

    Article  CAS  PubMed  Google Scholar 

  61. Kaneda M, Hirasawa R, Chiba H, Okano M, Li E, Sasaki H. Genetic evidence for Dnmt3a-dependent imprinting during oocyte growth obtained by conditional knockout with Zp3-Cre and complete exclusion of Dnmt3b by chimera formation. Genes Cells. 2010;15(3):169–79.

    Article  CAS  PubMed  Google Scholar 

  62. Shovlin TC, Bourc’his D, La Salle S, O’Doherty A, Trasler JM, Bestor TH, Walsh CP. Sex-specific promoters regulate Dnmt3L expression in mouse germ cells. Hum Reprod. 2007;22(2):457–67.

    Article  CAS  PubMed  Google Scholar 

  63. Sato C, Shimada M, Mori T, Kumasako Y, Otsu E, Watanabe H, Utsunomiya T. Assessment of human oocyte developmental competence by cumulus cell morphology and circulating hormone profile. Reprod Biomed Online. 2007;14(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  64. Khoueiry R, Ibala-Rhomdane S, Mery L, Blachere T, Guerin JF, Lornage J, Lefevre A. Dynamic CpG methylation of the KCNQ1OT1 gene during maturation of human oocytes. J Med Genet. 2008;45(9):583–8.

    Article  CAS  PubMed  Google Scholar 

  65. Geuns E, Hilven P, Van Steirteghem A, Liebaers I, De Rycke M. Methylation analysis of KvDMR1 in human oocytes. J Med Genet. 2007;44(2):144–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Bourc’his D, Bestor TH. Origins of extreme sexual dimorphism in genomic imprinting. Cytogenet Genome Res. 2006;113(1–4):36–40.

    PubMed  Google Scholar 

  67. Schulz R, Proudhon C, Bestor TH, Woodfine K, Lin CS, Lin SP, et al. The parental non-equivalence of imprinting control regions during mammalian development and evolution. PLoS Genet. 2010;6(11), e1001214.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Shi W, Haaf T. Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol Reprod Dev. 2002;63(3):329–34.

    Article  CAS  PubMed  Google Scholar 

  69. Sato A, Otsu E, Negishi H, Utsunomiya T, Arima T. Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum Reprod. 2007;22(1):26–35.

    Article  CAS  PubMed  Google Scholar 

  70. Fauque P, Jouannet P, Lesaffre C, Ripoche MA, Dandolo L, Vaiman D, Jammes H. Assisted reproductive technology affects developmental kinetics, H19 imprinting control region methylation and H19 gene expression in individual mouse embryos. BMC Dev Biol. 2007;7:116.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MRW. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet. 2010;19(1):36–51.

    Article  CAS  PubMed  Google Scholar 

  72. Fortier AL, Lopes FL, Darricarrere N, Martel J, Trasler JM. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet. 2008;17(11):1653–65.

    Article  CAS  PubMed  Google Scholar 

  73. Linke M, May A, Reifenberg K, Haaf T, Zechner U. The impact of ovarian stimulation on the expression of candidate reprogramming genes in mouse preimplantation embryos. Cytogenet Genome Res. 2013;139(2):71–9.

    Article  CAS  PubMed  Google Scholar 

  74. Picton HM, Harris SE, Muruvi W, Chambers EL. The in vitro growth and maturation of follicles. Reproduction. 2008;136(6):703–15.

    Article  CAS  PubMed  Google Scholar 

  75. Eppig JJ, O’Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod. 1996;54(1):197–207.

    Article  CAS  PubMed  Google Scholar 

  76. Siristatidis CS, Maheshwari A, Bhattacharya S. In vitro maturation in sub fertile women with polycystic ovarian syndrome undergoing assisted reproduction. Cochrane Database Syst Rev. 2009;(1):CD006606.

    Google Scholar 

  77. Wang N, Le F, Zhan QT, Li L, Dong MY, Ding GL, et al. Effects of in vitro maturation on histone acetylation in metaphase II oocytes and early cleavage embryos. Obstet Gynecol Int. 2010;2010:989278.

    PubMed Central  PubMed  Google Scholar 

  78. Buckett WM, Chian RC, Holzer H, Dean N, Usher R, Tan SL. Obstetric outcomes and congenital abnormalities after in vitro maturation, in vitro fertilization, and intracytoplasmic sperm injection. Obstet Gynecol. 2007;110(4):885–91.

    Article  PubMed  Google Scholar 

  79. Kerjean A, Couvert P, Hearns T, Chalas C, Poirier K, Chelly J, Jouannet P, Andras Paldi A, Poirot C. In vitro follicular growth affects oocyte imprinting establishment in mice. Eur J Hum Genet. 2003;11(7):493–6.

    Article  CAS  PubMed  Google Scholar 

  80. Anckaert E, Adriaenssens T, Romero S, Dremier S, Smitz J. Unaltered imprinting establishment of key imprinted genes in mouse oocytes after in vitro follicle under variable follicle stimulating hormone exposure. Int J Dev Biol. 2009;53(4):541–8.

    Article  CAS  PubMed  Google Scholar 

  81. Caperton L, Murphey P, Yamazaki Y, McMahan CA, Walter CA, Yanagimachi R, McCarrey JR. Assisted reproductive technologies do not alter mutation frequency or spectrum. Proc Natl Acad Sci U S A. 2007;104(12):5085–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Baerwald AR, Walker RA, Pierson RA. Growth rates of ovarian follicles during natural menstrual cycles, oral contraception cycles, and ovarian stimulation cycles. Fertil Steril. 2009;91(2):440–9.

    Article  PubMed  Google Scholar 

  83. Minocherhomji S, Athalye AS, Madon PF, Kulkarni D, Uttamchandani SA, Parikh FR. A case–control study identifying chromosomal polymorphic variations as forms of epigenetic alterations associated with the infertility phenotype. Fertil Steril. 2009;92(1):88–95.

    Article  CAS  PubMed  Google Scholar 

  84. Denomme MM, Mann MR. Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction. 2012;144(4):393–409.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayant G. Mehta PhD, DipRCPath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Mehta, J.G. (2015). Epigenetics and Ovarian Stimulation. In: Ghumman, S. (eds) Principles and Practice of Controlled Ovarian Stimulation in ART. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1686-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1686-5_35

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1685-8

  • Online ISBN: 978-81-322-1686-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics