Voronoi Diagram-Based Geometric Approach for Social Network Analysis

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 246)

Abstract

Social network analysis is aimed at analyzing relationships between social network users. Such analysis aims at finding community detection, that is, group of closest people in a network. Usually, graph clustering techniques are used to identify groups. Here, we propose a computational geometric approach to analyze social network. A Voronoi diagram-based clustering algorithm is employed over embedded dataset in the Euclidean vector space to identify groups. Structure-preserving embedding technique is used to embed the social network dataset and learns a low-rank kernel matrix by means of a semi-definite program with linear constraints that captures the connectivity structure of the input graph.

Keywords

Social network analysis Geometric clustering Voronoi diagram 

References

  1. 1.
    I-Hsien Ting, “Web Mining Techniques for On-line Social Networks Analysis”. Fifth IEEE international conference service systems and service management, 2008, pp. 1–5.Google Scholar
  2. 2.
    Brandes, U., Gaertler, M., and Wagner, D. 2007. Engineering graph clustering: Models and experimental evaluation. Journal of Experimental Algorithmics (JEA).Vol.12, Article 1.1 (2008).Google Scholar
  3. 3.
    Newman, M. E. J. “Fast algorithm for detecting community structure in networks”, Physical Review -Series E, Vol 69; Part 6; Part 2, pages 066133 (2004) [5 pages].Google Scholar
  4. 4.
    Vempala S., Kannan R., and Vetta A., “On clusterings good, bad and spectral”, In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science (FOCS00). pp. 367–378.Google Scholar
  5. 5.
    M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in networks”. Physical Review -Series E Vol. 69, pages 026113 (2004) [15 pages].Google Scholar
  6. 6.
    Charu C Aggarwal, Haixun Wang, “Managing and Mining Graph Data”, Advances in Database Systems, Springer Science + Business Media, Chapter 16, pp. 487–513, 2010.Google Scholar
  7. 7.
    Aaron Clauset, M. E. J. Newman, and Cristopher Moore, “Finding community structure in very large networks”. Phys. Rev. E Vol. 70, 066111. (2004) [6 pages].Google Scholar
  8. 8.
    MEJ Newman, “Power laws, Pareto distributions and Zipf’s law”. Contemporary Physics 46:5, 323–351, 2005.Google Scholar
  9. 9.
    J.Travers and S.Milgram, “An experimental study of the small world problem”. Sociometry, 32(4):425-443, 1969.Google Scholar
  10. 10.
    B. W. Kernighan and S. Lin “An efficient heuristic procedure for partitioning graphs”, Bell System Technical Journal, vol. 49, pp. 291–307 1970.Google Scholar
  11. 11.
    Earl R. Barnes, “An Algorithm for Partitioning the Nodes of a Graph”, SIAM. J. on Algebraic and Discrete Methods, 3(4), 541550,1982.Google Scholar
  12. 12.
    Ford L. R., and Fulkerson D. R., “Maximal flow through a network”, Can. J. Math 8, 399–404, 1956.Google Scholar
  13. 13.
    M. E. J. Newman, “Modularity and community structure in networks”, Proceedings of National Academy of Sciences of the USA, Vol. 103 no. 23 pp. 8577–8582, 2006.Google Scholar
  14. 14.
    Rattigan, M. J., M. Maier, and D. Jensen, “Graph clustering with network structure indices”, ICML’07 Proceedings of the 24th international conference on Machine learning, (ACM, New York, NY, USA), pp. 783–790, 2007.Google Scholar
  15. 15.
    Brandes, U., D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikolski, and D. Wagner, 2006, URL http://digbib.ubka.unikarlsruhe.de/volltexte/documents/3255.
  16. 16.
    Van Dongen, S. M., “Graph Clustering by Flow Simulation”. Ph.D. thesis, University of Utrecht, 2000.Google Scholar
  17. 17.
    David Harel, Yehuda Koren, On clustering using random walks. In Proceedings of the 21st Conference on Foundations of Software Technology and Theoretical Computer S. Lecture Notes in Computer Science, vol. 2245. Springer-Verlag, New York. 1841, 2001.Google Scholar
  18. 18.
    Preparata F. P., M. I. Shamos, “Computational Geometry-An Introduction”, Springer-Verlag, August 1985.Google Scholar
  19. 19.
    Blake Shaw, Tony Jebara, “Structure Preserving Embedding”, Proceedings of 26th International Conference on Machine Learning, Montreal, Canada, 2009.Google Scholar
  20. 20.
    Andrea Lancichinetti, Santo Fortunato, “Community detection algorithms: A comparative analysis”, Physical Review E, vol. 80, Issue 5, id. 056117, 2009.Google Scholar
  21. 21.
    Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi, “Benchmark graphs for testing community detection algorithms”, Physical Review E, 78, 046110, 2008.Google Scholar
  22. 22.
  23. 23.
    Gary Flake, Steve Lawrence, C. Lee Giles, Frans Coetzee, “Self-Organization and Identification of Web Communities”, IEEE Computer, 35(3), 66–71, 2002.Google Scholar
  24. 24.
    W. W. Zachary, “An information flow model for conflict and fission in small groups”, Journal of Anthropological Research 33, 452–473 (1977).Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Subu Surendran
    • 1
  • D. Chitraprasad
    • 2
  • M. R. Kaimal
    • 3
  1. 1.SCT College of EngineeringThiruvananthapuramIndia
  2. 2.TKM College of EngineeringKollamIndia
  3. 3.Amrita Vishwa VidyapeethamAmritapuri CampusKollamIndia

Personalised recommendations