The Robber Strikes Back

  • Anthony Bonato
  • Stephen Finbow
  • Przemysław Gordinowicz
  • Ali Haidar
  • William B. Kinnersley
  • Dieter Mitsche
  • Paweł Prałat
  • Ladislav Stacho
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 246)


We consider the new game of Cops and Attacking Robbers, which is identical to the usual Cops and Robbers game except that if the robber moves to a vertex containing a single cop, then that cop is removed from the game. We study the minimum number of cops needed to capture a robber on a graph G, written cc(G). We give bounds on cc(G) in terms of the cop number of G in the classes of bipartite graphs and diameter two, K 1, m -free graphs.


Cops and robbers Cop number Bipartite graphs Claw-free graphs 



The authors were supported by grants from NSERC and Ryerson University.


  1. 1.
    M. Aigner, M. Fromme, A game of cops and robbers, Discrete Applied Mathematics 8 (1984) 1–12.Google Scholar
  2. 2.
    W. Baird, A. Bonato, Meyniel’s conjecture on the cop number: a survey, Journal of Combinatorics 3 (2012) 225–238.Google Scholar
  3. 3.
    B. Bollobas, G. Kun, I. Leader, Cops and robbers in a random graph, Journal of Combinatorial Theory Series B 103 (2013) 226–236.Google Scholar
  4. 4.
    A. Bonato, WHAT IS… Cop Number? Notices of the American Mathematical Society 59 (2012) 1100–1101. Google Scholar
  5. 5.
    A. Bonato, Catch me if you can: Cops and Robbers on graphs, In: Proceedings of the 6th International Conference on Mathematical and Computational Models (ICMCM’11), 2011. Google Scholar
  6. 6.
    A. Bonato, A. Burgess, Cops and Robbers on graphs based on designs, Journal of Combinatorial Designs 21 (2013) 404–418.Google Scholar
  7. 7.
    A. Bonato, E. Chiniforooshan, P. Pralat, Cops and Robbers from a distance, Theoretical Computer Science 411 (2010) 3834–3844.Google Scholar
  8. 8.
    A. Bonato, R.J. Nowakowski, The Game of Cops and Robbers on Graphs, American Mathematical Society, Providence, Rhode Island, 2011.Google Scholar
  9. 9.
    A. Bonato, P. Pralat, C. Wang, Network security in models of complex networks, Internet Mathematics 4 (2009) 419–436.Google Scholar
  10. 10.
    M. Chudnovsky, P. Seymour, Clawfree Graphs IV - Decomposition theorem, Journal of Combinatorial Theory. Ser B 98 (2008) 839–938.Google Scholar
  11. 11.
    N.E. Clarke, Constrained Cops and Robber, Ph.D. Thesis, Dalhousie University, 2002.Google Scholar
  12. 12.
    A. Dudek, P. Gordinowicz, P. Pralat, Cops and Robbers playing on edges, preprint, 2013.Google Scholar
  13. 13.
    P. Frankl, Cops and robbers in graphs with large girth and Cayley graphs, Discrete Applied Mathematics 17 (1987) 301–305.Google Scholar
  14. 14.
    R.J. Nowakowski, P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete Mathematics 43 (1983) 235–239.Google Scholar
  15. 15.
    T. Luczak, P. Pralat, Chasing robbers on random graphs: zigzag theorem, Random Structures and Algorithms 37 (2010) 516–524.Google Scholar
  16. 16.
    P. Pralat, When does a random graph have constant cop number?, Australasian Journal of Combinatorics 46 (2010) 285–296.Google Scholar
  17. 17.
    P. Pralat, N.C. Wormald, Meyniel’s conjecture holds for random graphs, preprint, 2013.Google Scholar
  18. 18.
    P. Pralat, N.C. Wormald, Meyniel’s conjecture holds for random d-regular graphs, preprint, 2013.Google Scholar
  19. 19.
    A. Quilliot, Jeux et pointes fixes sur les graphes, These de 3eme cycle, Universite de Paris VI, 1978, 131–145.Google Scholar
  20. 20.
    D.B. West, Introduction to Graph Theory, 2nd edition, Prentice Hall, 2001.Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Anthony Bonato
    • 1
  • Stephen Finbow
    • 2
  • Przemysław Gordinowicz
    • 3
  • Ali Haidar
    • 4
  • William B. Kinnersley
    • 1
  • Dieter Mitsche
    • 5
  • Paweł Prałat
    • 1
  • Ladislav Stacho
    • 6
  1. 1.Ryerson UniversityTorontoCanada
  2. 2.St. Francis Xavier UniversityAntigonishCanada
  3. 3.Technical University of LodzLodzPoland
  4. 4.Carleton UniversityOttawaCanada
  5. 5.University of Nice Sophia-AntipolisNiceFrance
  6. 6.Simon Fraser UniversityBurnabyCanada

Personalised recommendations