Performance Enhancement of Brillouin Distributed Temperature Sensor Using Optimized Fiber

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 243)

Abstract

The improvement of signal-to-noise ratio (SNR) and the suppression of stimulated Brillouin scattering (SBS) effects in a long-range distributed sensor are presented in this paper. We have designed a simple Brillouin distributed temperature sensor using phase modulation and optimization technique. Global evolutionary computing-based optimization technique [particle swarm optimization (PSO)] is applied for fiber and receiver optimization. The simulated results of the sensing system are reported in this paper. The combination of phase modulation and the global evolutionary computing technique improved the SBS threshold power to an extent of 6.8 and 6.3 dBm for 50 and 75 km of sensing range, respectively. However, with both receiver and fiber optimization, a 20 dBm improvement of SNR for an input power of 5 dBm and 75 km of sensing range is reported.

Keywords

Evolutionary computing PSO SBS SNR 

References

  1. 1.
    Lee, C.C., Chi, S.: Measurement of stimulated Brillouin scattering threshold for various types of fibers using Brillouin optical time-domain reflectometer. IEEE Photon. Technol. Lett. 12(6), 672–674 (2000)Google Scholar
  2. 2.
    Soto, M.A., Taki, M., Bolognini, G., Pasquale, F.D.: Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification. Opt. Express 20(7), 6860–6869 (2012)CrossRefGoogle Scholar
  3. 3.
    Webels, P., Adel, P., Auerbach, M., Wandt, D., Fallnich, C.: Novel suppression scheme for Brillouin scattering. Opt. Express 12(19), 4443–4448 (2004)CrossRefGoogle Scholar
  4. 4.
    Kobyakov, A., Kumar, S., Chowdhury, D., Ruffin, A.B., Sauer, M., Bickham, S.R., Mishra, R.: Design concept for optical fibers with enhanced SBS threshold. Opt. Express 13(14), 5338–5346 (2005)Google Scholar
  5. 5.
    Chang, T., Koscica, T.E., Li, D.Y., Jia, L., Sui, Q., Cui, H.L.: A novel detection method of Brillouin backscattered light in optical fiber. IEEE Sens. J. 9(4), 430–434 (2009)Google Scholar
  6. 6.
    Bromage, J.: Raman amplification for fiber communications systems. J. Lightwave Technol. 22(1), 79–93 (2004)Google Scholar
  7. 7.
    Sahu, P.K., Soto, M. A., Lee, J., Bolognini, G., Park, N., Pasquale, F. D.: Analysis of Brillouin-based distributed fiber sensors using optical pulse coding. OFC/NFOEC, San Diego, US, pp. 1–3 Feb (2008)Google Scholar
  8. 8.
    Lopez-Higuera, J.M.: Handbook of optical fibre sensing technology. Wiley, NY (2002). ISBN 0-47182-053-9Google Scholar
  9. 9.
    Yan, S.Z., Chyan, L.S.: Performance enhancement of BOTDR fiber optic sensor for oil and gas pipeline monitoring. Opt. Fiber Technol. 16(2), 100–109 (2010)Google Scholar
  10. 10.
    Agrawal, G.P.: Fiber-optic communications systems, 3rd edn. Wiley, NY (2002). ISBN 0-471-21571-6Google Scholar
  11. 11.
    Guo, W., Xiong, N., Vasilakos, A.V., Chen, G., Chaolong, Y.: Distributed k-connected fault-tolerant topology control algorithms with PSO in future autonomic sensor systems. Int. J. of Sensor Netw. 12(1), 53–62 (2012)CrossRefGoogle Scholar
  12. 12.
    Al-Asadi, H.A., Al-Mansoori, M.H., Hitam, S., Saripan, M.I., Mahdi, M.A.: Particle swarm optimization on threshold exponential gain of stimulated Brillouin scattering in single mode fibers. Opt. Express 19(3), 1842–1853 (2011)CrossRefGoogle Scholar
  13. 13.
    Chang, T., Li, D.Y., Koscica, T.E., Cui, H.L., Sui, Q., Jia, L.: Fiber optic distributed temperature and strain sensing system based on Brillouin light scattering. Appl. Opt. 47(33), 6202–6206 (2008)CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.School of Electrical SciencesIITBhubaneswarIndia

Personalised recommendations