M-Band and Rotated M-Band Dual-Tree Complex Wavelet Transform for Texture Image Retrieval

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 243)

Abstract

A new set of two-dimensional (2D) M-band dual-tree complex wavelet transform (M_band_DT_CWT) and rotated M_band_DT_CWT is designed to improve the texture retrieval performance. Unlike the standard dual-tree complex wavelet transform (DT_CWT), which gives a logarithmic frequency resolution, the M-band decomposition gives a mixture of logarithmic and linear frequency resolution. Most texture image retrieval systems are still incapable of providing retrieval result with high retrieval accuracy and less computational complexity. To address this problem, we propose a novel approach for texture image retrieval using M_band_DT_CWT and rotated M_band_DT_CWT (M_band_DT_RCWT) by computing the energy, standard deviation, and their combination on each sub-band of the decomposed image. To check the retrieval performance, texture database of 1,856 textures is created from Brodatz album. Retrieval efficiency and accuracy using proposed features are found to be superior to other existing methods.

Keywords

M-band wavelets Feature extraction M-band dual-tree complex wavelets Image retrieval 

References

  1. 1.
    Rui, Y., Huang, T.S.: Image retrieval: current techniques, promising directions and open issues. J. Vis. Commun. Image Represent. 10, 39–62 (1999)CrossRefGoogle Scholar
  2. 2.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  3. 3.
    Kokare, M., Chatterji, B.N., Biswas, P.K.: A survey on current content based image retrieval methods. IETE J. Res. 48(3 and 4), 261–271 (2002)Google Scholar
  4. 4.
    Liu, Y., Zhang, D., Lu, G., Ma, W.Y.: A survey of content-based image retrieval with high-level semantics. J. Pattern Recogn. 40, 262–282 (2007)CrossRefMATHGoogle Scholar
  5. 5.
    Liu, F., Picard, R.W.: Periodicity, directionality, and randomness: wold features for image modeling and retrieval. IEEE Trans. Pattern Anal. Machine Intell. 18, 722–733 (1996)CrossRefGoogle Scholar
  6. 6.
    Smith, J.R., Chang, S.F.: Automated binary texture feature sets for image retrieval. In: Proceedings IEEE International Conference Acoustics, Speech and Signal Processing, pp. 2239–2242. Columbia University, NY (1996)Google Scholar
  7. 7.
    Ahmadian, A., Mostafa, A.: An efficient texture classification algorithm using Gabor wavelet. In: Proceedings of the 25th Annual International Conference of the IEEE EMBS, pp. 930–933. Cancun, Mexico (2003)Google Scholar
  8. 8.
    Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multi-resolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Unser, M.: Texture classification by wavelet packet signatures. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1186–1191 (1993)CrossRefGoogle Scholar
  10. 10.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)CrossRefGoogle Scholar
  11. 11.
    Kokare, M., Biswas, P.K., Chatterji, B.N.: Texture image retrieval using rotated wavelet filters. J. Pattern Recogn. Lett. 28, 1240–1249 (2007)CrossRefGoogle Scholar
  12. 12.
    Kokare, M., Biswas, P.K., Chatterji, B.N.: Texture image retrieval using new rotated complex wavelet filters. IEEE Trans. Syst. Man Cybern. 33(6), 1168–1178 (2005)CrossRefGoogle Scholar
  13. 13.
    Kokare, M., Biswas, P.K., Chatterji, B.N.: Rotation-invariant texture image retrieval using rotated complex wavelet filters. IEEE Trans. Syst. Man Cybern. 36(6), 1273–1282 (2006)CrossRefGoogle Scholar
  14. 14.
    Birgale, L., Kokare, M., Doye, D.: Color and texture features for content based image retrieval. In: International Conference on Computer Graphics, Image and Visualisation, pp. 146–149. Washington, DC (2006)Google Scholar
  15. 15.
    Murala, S, Gonde, A.B., Maheshwari, R.P.: Color and texture features for image indexing and retrieval. In: IEEE International Advance Computing Conference, pp. 1411–1416, Patial, India, (2009)Google Scholar
  16. 16.
    Kokare, M., Biswas, P.K., Chatterji, B.N.: Cosine-modulated wavelet based texture features for content-based image retrieval. Pattern Recogn. Lett. 25(4) 391–398 ( (2004)Google Scholar
  17. 17.
    Gopinath, R.A., Burrus, C.S.: Wavelets and filter banks. In: Chui, C.K. (ed.) Wavelets: a Tutorial in Theory and Applications, pp. 603–654. Academic Press, San Diego (1992)CrossRefGoogle Scholar
  18. 18.
    Hsin, H.C.: Texture segmentation using modulated wavelet transform. IEEE Trans. Image Process. 9(7), 1299–1302 (2000)CrossRefGoogle Scholar
  19. 19.
    Guillemot, C., Onno, P.: Cosine-modulated wavelets: new results on design of arbitrary length filters and optimization for image compression. In: Proceedings International Conference on Image Processing 1, pp. 820–824, Austin, TX (1994)Google Scholar
  20. 20.
    Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)CrossRefMATHGoogle Scholar
  21. 21.
    Rioul, O., Veterli, M.: Wavelets and signal processing. IEEE Signal Process. Mag. 8, 14–38 (1991)CrossRefGoogle Scholar
  22. 22.
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Zou, H., Tewfik, A.H.: Discrete orthogonal M-band wavelet decompositions. In: Proceedings of International Conference on Acoustic Speech and Signal Processing, vol. 4, pp. IV-605-IV-608 (1992)Google Scholar
  24. 24.
    Chaux, C., Duval, L., Pesquet, J.C.: Hilbert pairs of M-band orthonotmal wavelet bases. In: Proceeding European Signal and Image Processing Conference (2004)Google Scholar
  25. 25.
    Chaux, C., Duval, L., Pesquet, J.C.: Image analysis using a dual-tree M-band wavelet transform. IEEE Trans. Image Process. 15(8), 2397–2412 (2006)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Rourke, T.P.O., Stevenson, R.L.: Human visual system based wavelet decomposition for image compression. J. Vis. Commun. Image Represent. 6, 109–121 (1995)CrossRefGoogle Scholar
  27. 27.
    Kim, N.D., Udpa, S.: Texture classification using rotated wavelet filters. IEEE Trans. Syst. Man Cybernet. Part A: Syst. Human 30, 847–852 (2000)CrossRefGoogle Scholar
  28. 28.
    Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)Google Scholar
  29. 29.
    Daugman, J.: Two-dimensional spectral analysis of cortical receptive field profile. Vision. Res. 20, 847–856 (1980)CrossRefGoogle Scholar
  30. 30.
    Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, NY (1996)Google Scholar
  31. 31.
    University of Suthern California: Signal and Image Processing Institute, Rotated textures. Available: http://sipi.usc.edu/database/

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringAndhra UniversityVisakhapatnamIndia

Personalised recommendations