Advertisement

DBC Co-occurrence Matrix for Texture Image Indexing and Retrieval

  • K. Prasanthi Jasmine
  • P. Rajesh Kumar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 243)

Abstract

In this paper, a new image indexing and retrieval algorithm using directional binary code (DBC) co-occurrence matrix is proposed. The exits DBC collect the directional edges, which are calculated by applying the first-order derivatives in 0º, 45º, 90º, and 135º directions. The feature vector length of DBC for a particular direction is 512, which are more for image retrieval. To avoid this problem, we collect the directional edges by excluding the center pixel and further applied the rotation invariant property. Finally, we calculated the co-occurrence matrix to form the feature vector. The retrieval results of the proposed method have been tested by conducting the experiment on Brodatz texture database. The results after being investigated show a significant improvement in terms of their evaluation measures as compared to LBP, DBC, and other transform domain features.

Keywords

Directional binary code Texture Pattern recognition Feature extraction Local binary patterns Image retrieval 

References

  1. 1.
    Rui, Y., Huang, T.S.: Image retrieval: current techniques, promising directions and open issues. J. Vis. Commun. Image Represent. 10, 39–62 (1999)CrossRefGoogle Scholar
  2. 2.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  3. 3.
    Kokare, M., Chatterji, B.N., Biswas, P.K.: A survey on current content based image retrieval methods. IETE J. Res. 48(3&4), 261–271 (2002)Google Scholar
  4. 4.
    Liu, Y., Zhang, D., Lu, G., Ma, W.Y.: A survey of content-based image retrieval with high-level semantics. J. Pattern Recogn. 40, 262–282 (2007)CrossRefMATHGoogle Scholar
  5. 5.
    Swain, M.J., Ballar, D.H.: Indexing via color histograms. In: Proceedings 3rd International Conference Computer Vision, pp. 11–32. Rochester University, NY, (1991)Google Scholar
  6. 6.
    Stricker, M., Oreng, M.: Similarity of color images. In: Proceedings SPIE, Storage and Retrieval for Image and Video Databases, pp. 381–392 (1995)Google Scholar
  7. 7.
    Pass, G., Zabih, R., Miller, J.: Comparing images using color coherence vectors. In: Proceedings 4th ACM Multimedia Conference, pp. 65–73. Massachusetts, USA (1997)Google Scholar
  8. 8.
    Huang, J., Kumar, S.R., Mitra, M.: Combining supervised learning with color correlograms for content-based image retrieval. In: Proceedings 5th ACM Multimedia Conference, pp. 325–334 (1997)Google Scholar
  9. 9.
    Lu, Z.M., Burkhardt, H.: Colour image retrieval based on DCT domain vector quantization index histograms. J. Electron. Lett. 41(17), 29–30 (2005)Google Scholar
  10. 10.
    Haralick, R.M., Shangmugam, K., Dinstein, I.: Textural feature for image classification. IEEE Trans. Syst. Man Cybern. SMC-3(6), 610–621 (1973)Google Scholar
  11. 11.
    Cross, G., Jain, A.: Markov random field texture models. IEEE Trans. Pattern Anal. Mach. Intell. 5(1), 25–39 (1983)CrossRefGoogle Scholar
  12. 12.
    Mao, J., Jain, A.: Texture classification and segmentation using multi-resolution simultaneous autoregressive models. Pattern Recogn. 25(2), 173–188 (1992)CrossRefGoogle Scholar
  13. 13.
    Liu, F., Picard, R.: Periodicity, directionality, and randomness: wold features for image modeling and retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 18(7), 722–733 (1996)CrossRefGoogle Scholar
  14. 14.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)CrossRefGoogle Scholar
  15. 15.
    Han, J., Ma, K–.K.: Rotation-invariant and scale-invariant Gabor features for texture image retrieval. Image Vision Comput. 25, 1474–1481 (2007)CrossRefGoogle Scholar
  16. 16.
    Chang, T., Jay Kuo, C.C.: Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. Image Process. 2(4), 429–441 (1993)CrossRefGoogle Scholar
  17. 17.
    Laine, A., Fan, J.: Texture classification by wavelet packet signatures. IEEE Trans. Pattern Anal. Mach. Intell. 11(15), 1186–1191 (1993)CrossRefGoogle Scholar
  18. 18.
    Murala, S., Gonde, A.B., Maheshwari, R.P.: Color and Texture Features for Image Indexing and Retrieval, IEEE International advance computing conference, pp. 1411–1416. Patial, India, (2009)Google Scholar
  19. 19.
    Subrahmanyam, M., Maheshwari, R.P., Balasubramanian, R.: A correlogram algorithm for image indexing and retrieval using wavelet and rotated wavelet filters. Int. J. Sign. Imaging Syst. Eng. 4(1), 27–34 (2011)Google Scholar
  20. 20.
    Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. J. Pattern Recogn. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  21. 21.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  22. 22.
    Pietikainen, M., Ojala, T., Scruggs, T., Bowyer, K.W., Jin, C., Hoffman, K., Marques, J., Jacsik, M., Worek, W.: Overview of the face recognition using feature distributions. J. Pattern Recogn. 33(1), 43–52 (2000)CrossRefGoogle Scholar
  23. 23.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Applications to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)CrossRefGoogle Scholar
  24. 24.
    Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)CrossRefGoogle Scholar
  25. 25.
    Heikkila, M., Pietikainen, M.: A texture based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006)CrossRefGoogle Scholar
  26. 26.
    Huang, X., Li, S.Z., Wang, Y.: Shape localization based on statistical method using extended local binary patterns. In: Proceedings International Conference Image and Graphics, pp. 184–187 (2004)Google Scholar
  27. 27.
    Heikkila, M., Pietikainen, M., Schmid, C.: Description of interest regions with local binary patterns. J. Pattern Recogn. 42, 425–436 (2009)CrossRefGoogle Scholar
  28. 28.
    Li, M., Staunton, R.C.: Optimum Gabor filter design and local binary patterns for texture segmentation. J. Pattern Recogn. 29, 664–672 (2008)CrossRefGoogle Scholar
  29. 29.
    Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: Face recognition with higher-order local pattern descriptor. IEEE Trans. Image Proc. 19(2), 533–544 (2010)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Zhang, B., Zhang, L., Zhang, D., Shen, L.: Directional binary code with application to PolyU near-infrared face database. Pattern Recogn. Lett. 31, 2337–2344 (2010)CrossRefGoogle Scholar
  31. 31.
    Abdullah, A., Veltkamp, R.C., Wiering, M.A.: Fixed Partitioning and salient points with MPEG-7 cluster correlogram for image categorization. Pattern Recogn. 43, 650–662 (2010)CrossRefMATHGoogle Scholar
  32. 32.
    Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, NY (1996)Google Scholar
  33. 33.
    University of Southern California: Signal and image processing institute, rotated textures. Available: http://sipi.usc.edu/database/

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringAndhra UniversityVisakhapatnamIndia

Personalised recommendations