Skip to main content

Role of Calcium/Calmodulin in Plant Stress Response and Signaling

  • Chapter
  • First Online:

Abstract

Calcium is a common intracellular second messenger in all the eukaryotes, regulating plethora of cellular processes. Many effects of calcium are mediated by calmodulin superfamily of calcium-binding regulatory protein. Calmodulin is a ubiquitously found and highly conserved calcium sensor throughout eukaryotes; it plays a critical role in calcium-mediated signaling involved in a myriad of cellular processes and responses. Calmodulin works by binding to short peptide sequences in target proteins, bringing about structural changes, which alter the activity of target proteins in response to changes in intracellular calcium level. Plants have evolved a complex network of calmodulin and calmodulin-binding target proteins that serve to play an important role in mediating stress-signaling pathways. Many of the calmodulin-binding proteins include transcription factors, ion channels, and metabolic enzymes that assist plant to effectively cope with environmental stress and pathogens. Extensive research over the past decade has been focused on understanding the function of calmodulin in biotic and abiotic stress response. Several studies employing genetic, molecular biology and biochemical techniques have yielded interesting insights into the function of calmodulin in modulating its various targets to provide stress resistance. In this chapter, we attempt to summarize the major findings about the regulatory role of CaM and its target proteins in abiotic and biotic stress response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ali R, Ma W, Lemtiri-Chlieh F et al (2007) Death don’t have no mercy and neither does calcium: Arabidopsis cyclic nucleotide gated channel2 and innate immunity. Plant Cell 19:1081–1095

    Article  PubMed  CAS  Google Scholar 

  • Allen GJ, Chu SP, Schumacher K et al (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289:2338–2342

    Article  PubMed  CAS  Google Scholar 

  • Al-Quraan NA, Locy RD, Singh NK (2010) Expression of calmodulin genes in wild type and calmodulin mutants of Arabidopsis thaliana under heat stress. Plant Physiol Biochem 48(8):697–702

    Article  PubMed  CAS  Google Scholar 

  • Bargmann BO, Munnik T (2006) The role of phospholipase D in plant stress responses. Curr Opin Plant Biol 9:515–522

    Article  PubMed  CAS  Google Scholar 

  • Bartels S, Anderson JC, Gonzalez Besteiro MA et al (2009) MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell 21:2884–2897

    Article  PubMed  CAS  Google Scholar 

  • Boonburapong B, Buaboocha T (2007) Genome wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol 7:4

    Article  PubMed  Google Scholar 

  • Bouche N, Yellin A, Snedden WA et al (2005) Plant specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466

    Article  PubMed  CAS  Google Scholar 

  • Boursiac Y, Harper JF (2007) The origin and function of calmodulin regulated Ca2+ pumps in plants. J Bioenerg Biomembr 39:409–414

    Article  PubMed  CAS  Google Scholar 

  • Cates MS, Teodoro ML, Phillips GN Jr (2002) Molecular mechanisms of calcium and magnesium binding to parvalbumin. Biophys J 82:1133–1146

    Article  PubMed  CAS  Google Scholar 

  • Cheung WY (1971) Cyclic 3’,5’-nucleotide phosphodiesterase. Evidence for and properties of a protein activator. J Biol Chem 246(9):2859–2869

    PubMed  CAS  Google Scholar 

  • Choi JY, Lee SH, Park CY et al (2002) Identification of calmodulin isoform-specific binding peptides from a phage-displayed random 22-mer peptide library. J Biol Chem 277:21630–21638

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant–microbe interactions. Plant Cell 8:1793–1807

    PubMed  CAS  Google Scholar 

  • Dauwalder M, Roux SJ (1986) Distribution of calmodulin in corn seedlings: immunocytochemical localization in coleoptiles and root apices. Adv Space Res 6(12):67–70

    Article  PubMed  CAS  Google Scholar 

  • Davis TN, Urdea MS, Masiarz FR et al (1986) Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell 47(3):423–431

    Article  PubMed  CAS  Google Scholar 

  • DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signalling. Biochem J 425:27–40

    Article  CAS  Google Scholar 

  • Demidchik V, Maathuis FJ (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175(3):387–404

    Article  PubMed  CAS  Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ et al (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21(3):972–984

    Article  PubMed  CAS  Google Scholar 

  • Du L, Poovaiah BW (2005) Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature 437:741–745

    Article  PubMed  CAS  Google Scholar 

  • Du L, Ali GS, Simons KA et al (2009) Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457:1154–1159

    Article  PubMed  CAS  Google Scholar 

  • Duval FD, Renard M, Jaquinod M et al (2002) Differential expression and functional analysis of three calmodulin isoforms in germinating pea (Pisum sativum L.) seeds. Plant J 32(4):481–493

    Google Scholar 

  • Ebashi S, Kodama A (1965) A new protein factor promoting aggregation of tropomyosin. J Biochem 58(1):107–108

    PubMed  CAS  Google Scholar 

  • Felzon H, Capelli N, Dat J et al (2005) Molecular cloning and characterization of calmodulin genes in young oak seedlings (Quercus petraea L.) during early flooding stress. Biochim Biophys Acta 1727:213–219

    Article  Google Scholar 

  • Galon Y, Nave R, Boyce JM et al (2010) Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to stresses in Arabidopsis. Planta 232(1):165–178

    Article  PubMed  CAS  Google Scholar 

  • Geisler M, Frangne N, Gomès E et al (2000) The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol 124(4):1814–1827

    Article  PubMed  CAS  Google Scholar 

  • Giesler M, Marjolaine G, Sabine B et al (2004) Arabidopsis immunophilin-like TWD1 functionally interacts with vacuolar ABC transporters. Mol Biol Cell 15(7):3393–3405

    Article  Google Scholar 

  • Gut H, Dominici P, Pilati S et al (2009) A common structural basis for pH- and calmodulin-mediated regulation in plant glutamate decarboxylase. J Mol Biol 392:334–351

    Article  PubMed  CAS  Google Scholar 

  • Harding SA, Oh SH, Roberts DM (1997) Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species. EMBO J 16:1137–1144

    Article  PubMed  CAS  Google Scholar 

  • Heo WD, Lee SH, Kim MC et al (1999) Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci USA 96:766–771

    Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca(2+) signals in plants. Annu Rev Plant Biol 55:401–427

    Article  PubMed  CAS  Google Scholar 

  • Hsieh H-L (2000) Regulation of a recombinant pea nuclear apyrase by calmodulin and casein kinase II. Biochim Biophys Acta 1494:248–255–542

    Article  PubMed  CAS  Google Scholar 

  • Iakimova ET, Michalczuk L, Woltering EJ (2005) Hypersensitive cell death in plants – its mechanisms and role in plant defence against pathogens. J Food Ornament Plant Res 13:135–158

    CAS  Google Scholar 

  • Ishida H, Huang H, Yamniuk AP et al (2008) The solution structures of two soybean calmodulin isoforms provide a structural basis for their selective target activation properties. J Biol Chem 283(21):14619–14628

    Google Scholar 

  • Jarrett HW, Charbonneau H, Anderson JM et al (1980) Plant calmodulin and the regulation of NAD kinase. Ann N Y Acad Sci 356:119–129

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Leidi EO, Pardo JM (2010) How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signal Behav 5(7):792–795

    Article  PubMed  CAS  Google Scholar 

  • Journot-Catalino N, Somssich IE, Roby D et al (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18:3289–3302

    Article  PubMed  CAS  Google Scholar 

  • Kang CH, Jung WY, Kang YH et al (2006) AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ 13(1):84–95

    Article  PubMed  CAS  Google Scholar 

  • Kant S, Bi YM, Zhu T et al (2009) SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol 151:691–701

    Article  PubMed  CAS  Google Scholar 

  • Kim MC, Lee SH, Kim JK et al (2002) Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. J Biol Chem 277:19304–19314

    Article  PubMed  CAS  Google Scholar 

  • Kim KC, Fan B, Chen Z (2006) Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiol 142(3):1180–1192

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Park BO, Yoo JH et al (2007) Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis. J Biol Chem 282:36292–36302

    Article  PubMed  CAS  Google Scholar 

  • Koo S, Choi M, Chun H et al (2009) The calmodulin-binding transcription factor OsCBT suppresses defense responses to pathogens in rice. Mol Cells 27:563–570

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Polisensky DH, Braam J (2005) Genome-wide identification of touch- and darkness-regulated Arabidopsis genes: a focus on calmodulin-like and XTH genes. New Phytol 165(2):429–444

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Wang Q, Kaspi R et al (2005) Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J 43(1):79–96

    Article  PubMed  CAS  Google Scholar 

  • Li B, Liu HT, Sun DY et al (2004) Ca(2+) and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitro. Plant Cell Physiol 45(5):627–634

    Article  PubMed  CAS  Google Scholar 

  • Li X, Borsics T, Harrington HM, Christopher DA (2005) Arabidopsis AtCNGC10 rescues potassium channel mutants of E. coli, yeast and Arabidopsis and is regulated by calcium/calmodulin and cyclic GMP in E. coli. Funct Plant Biol 32:643–653

    Article  Google Scholar 

  • Li Z-G, Gong M, Xie H et al (2012) Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco(Nicotiana tabacum L) suspension cultured cells and involvement of Ca2+ and calmodulin. Plant Sci 185–196. doi:10.1016

    Google Scholar 

  • Liang L, Flury S, Kalck V et al (2006) CENTRIN2 interacts with the Arabidopsis homolog of the human XPC protein (AtRAD4) and contributes to efficient synthesis-dependent repair of bulky DNA lesions. Plant Mol Biol 61(1–2):345–356

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Li GL, Chang H et al (2007) Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ 30(2):156–164

    Article  PubMed  CAS  Google Scholar 

  • Lu HP (2005) Single-molecule study of protein-protein and protein-DNA interaction dynamics. Methods Mol Biol 305:385–414

    PubMed  CAS  Google Scholar 

  • Ma W, Smigel A, Tsai YC et al (2008) Innate immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein. Plant Physiol 148(2):818–828

    Article  PubMed  CAS  Google Scholar 

  • Ma F, Lu R, Liu H et al (2012) Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. J Exp Bot. doi:10.1093/jxb/ers161

    Google Scholar 

  • MacGregor KB, Shelp BJ, Peiris S et al (2003) Overexpression of glutamate decarboxylase in transgenic tobacco plants deters feeding by phytophagous insect larvae. J Chem Ecol 29:2177–2182

    Article  PubMed  CAS  Google Scholar 

  • McCormack E, Braam J (2003) Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol 159:585–598

    Article  CAS  Google Scholar 

  • McCormack E, Tsai Y-C, Braam J (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci 10:383–388

    Article  PubMed  CAS  Google Scholar 

  • Magnan F, Ranty B, Charpenteau M et al. (2008) Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56(4):575–578.

    Article  PubMed  CAS  Google Scholar 

  • Meneghelli S, Fusca T, Luoni L et al (2008) Dual mechanism of activation of plant plasma membrane Ca2 + −ATPase by acidic phospholipids: evidence for a phospholipid binding site which overlaps the calmodulin-binding site. Mol Membr Biol 25:539–546

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Laun TM, Smykowski A (2007) Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Plant Mol Biol 65(1–2):63–76

    Article  PubMed  CAS  Google Scholar 

  • Nakahara KS, Masutaa C, Yamada S et al (2012) Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. PNAS 109:10113–10118

    Article  PubMed  CAS  Google Scholar 

  • Nie H, Zhao C, Wu G et al (2012) SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN31. Plant Physiol 158:1847–1859

    Article  PubMed  CAS  Google Scholar 

  • Oh MH, Wang X, Kota U et al (2009) Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc Natl Acad Sci U S A 106:658–663

    Article  PubMed  CAS  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL et al (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    Article  PubMed  CAS  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  PubMed  CAS  Google Scholar 

  • Park CY, Lee JH, Yoo JH et al (2005) WRKY group IId transcription factors interact with calmodulin. FEBS Lett 579:1545–1550

    Article  PubMed  CAS  Google Scholar 

  • Park HC, Kim ML, Kang YH et al (2009) Functional analysis of the stress-inducible soybean calmodulin isoform-4 (GmCaM-4) promoter in transgenic tobacco plants. Mol Cells 27(4):475–480

    Article  PubMed  CAS  Google Scholar 

  • Patil S, Takezawa D, Poovaiah BW (1995) Chimeric plant calcium/calmodulin-dependent protein kinase gene with a neural visinin-like calcium-binding domain. Proc Natl Acad Sci U S A 92:4897–4901

    Article  PubMed  CAS  Google Scholar 

  • Pazos F, Valencia A (2001) Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng 14(9):609–614

    Article  PubMed  CAS  Google Scholar 

  • Perochon A, Aldon D, Galaud JP et al (2011) Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 93(12):2048–2053

    Article  PubMed  CAS  Google Scholar 

  • Perruc E, Charpenteau M, Ramirez BC et al (2004) A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Plant J 38(3):410–420

    Article  PubMed  CAS  Google Scholar 

  • Poovaiah BW, Takezawa D, An G et al (1996) Regulated expression of a calmodulin isoform alters growth and development in potato. J Plant Physiol 149:553–558

    Article  PubMed  CAS  Google Scholar 

  • Popescu SC, Popescu GV, Bachan S et al (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci U S A 104(11):4730–4735

    Article  PubMed  CAS  Google Scholar 

  • Raghothama KG, Mizrahi Y, Poovaiah BW (1985) Effect of calmodulin antagonists on auxin induced elongation. Plant Physiol 79:28–33

    Article  PubMed  CAS  Google Scholar 

  • Ranty B, Aldon D, Galaud J-P (2006) Plant calmodulins and calmodulin-related proteins multifaceted relays to decode calcium signals. Plant Signal Behav 1(3):96–104

    Article  PubMed  Google Scholar 

  • Reddy AS, Ben-Hur A, Day IS (2011) Experimental and computational approaches for the study of calmodulin interactions. Phytochemistry 72(10):1007–1019

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Concepcion M, Yalovsky S, Zik M et al (1999) The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein. EMBO J 18:1996–2007

    Article  PubMed  CAS  Google Scholar 

  • Snedden WA, Blumwald E (2000) Alternative splicing of a novel diacylglycerol kinase in tomato leads to a calmodulin-binding isoform. Plant J 24:317–326

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Kaplan B, Bouche N et al (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24:533

    Article  PubMed  CAS  Google Scholar 

  • Takezawa D (2003) Characterization of a novel plant PP2C-like protein Ser/Thr phosphatase as a calmodulin-binding protein. J Biol Chem 278(39):38076–38083

    Article  PubMed  CAS  Google Scholar 

  • Vadassery J, Reichelt M, Hause B et al (2012) CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiol 159(3):1159–1175

    Article  PubMed  CAS  Google Scholar 

  • Vert G, Nemhauser JL, Geldner N et al (2005) Molecular mechanisms of steroid hormone signaling in plants. Annu Rev Cell Dev Biol 21:177–201

    Article  PubMed  CAS  Google Scholar 

  • Vinogradova MV, Malanina GG, Reddy VS et al (2004) Structural dynamics of the microtubule binding and regulatory elements in the kinesin-like calmodulin binding protein. J Struct Biol 163(1):76–83

    Article  Google Scholar 

  • Wallace W, Secor J, Schrader LE (1984) Rapid accumulation of gamma-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation. Plant Physiol 75:170–175

    Article  PubMed  CAS  Google Scholar 

  • Wan D, Li R, Zou B et al (2012) Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. Plant Cell Rep 31(7):1269–1281

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhang WZ, Song LF et al (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148(3):1201–1211

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Chen B, Liu P, Zheng M et al (2009a) Calmodulin binds to extracellular sites on the plasma membrane of plant cells and elicits a rise in intracellular calcium concentration. J Biol Chem 284(18):12000–12007

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Tsuda K, Truman W et al (2009b) Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog 5(2):e1000301

    Article  PubMed  Google Scholar 

  • Watterson DM, Sharief F, Vanaman TC (1980) The complete amino acid sequence of the Ca2 + − dependent modulator protein (calmodulin) of bovine brain. J Biol Chem 255(3):962–975

    PubMed  CAS  Google Scholar 

  • Weng H, Yoo CY, Gosney MJ et al (2012) Poplar GTL1 is a Ca2+/calmodulin-binding transcription factor that functions in plant water use efficiency and drought tolerance. PLoS One 7(3):e32925

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Piñeros M, Tester M et al (2000) Cation permeability and selectivity of a root plasma membrane calcium channel. J Membr Biol 174:71–83

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Harrison DH, Schlichting I et al (1994) Structure of the regulatory domain of scallop myosin at 2.8 A resolution. Nature 368(6469):306–312

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Heath MC (1998) Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus. Plant Cell 10(4):585–598

    PubMed  CAS  Google Scholar 

  • Xu GY, Pedro SCF, Rocha et al (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234(1):47–59

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Aharon GS, Sottosanto JB et al (2005) Vacuolar Na+/H + antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2 + − and pH-dependent manner. Proc Natl Acad Sci U S A 102:16107–16112

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa H, Katou S, Seo S et al (2004) Plant MAPK phosphatase interacts with calmodulins. J Biol Chem 279:928–936

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2000) Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J Biol Chem 275:3137–3143

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci U S A 99(6):4097–4102

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8(10):505–512

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Segal G, Abbo S et al (1996) Characterization of the calmodulin gene family in wheat: structure, chromosomal location, and evolutionary aspects Mol. Gen. Genet 252(6):684–94

    Google Scholar 

  • Yang T, Chaudhuri S, Yang L et al (2004) Calcium/calmodulin up-regulates a cytoplasmic receptor-like kinase in plants. J Biol Chem 279:42552–42559

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Chaudhuri S, Yang L et al (2010) A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem 285:7119–7126

    Article  PubMed  CAS  Google Scholar 

  • Yap KL, Yuan T, Mal TK et al (2003) Structural basis for simultaneous binding of two carboxy-terminal peptides of plant glutamate decarboxylase to calmodulin. J Mol Biol 328(1):193–204

    Article  PubMed  CAS  Google Scholar 

  • Yoo JH, Park CY, Kim JC et al (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280:3697–3706

    Article  PubMed  CAS  Google Scholar 

  • Yoo CY, Hasegawa PM, Mickelbart MV et al (2010) Regulation of stomatal density by the GTL1 transcription factor for improving water use efficiency. Plant Signal Behav 6(7):1069–1071

    Article  Google Scholar 

  • Zhang W, Zhou RG, Gao YJ et al (2009a) Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol 149(4):1773–1784

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Ye YK, Wang SH et al (2009b) Hydrogen sulfide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regul 58(2009):243–250

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girdhar K. Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Das, R., Pandey, A., Pandey, G.K. (2014). Role of Calcium/Calmodulin in Plant Stress Response and Signaling. In: Gaur, R., Sharma, P. (eds) Approaches to Plant Stress and their Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1620-9_4

Download citation

Publish with us

Policies and ethics