A Review of Hybrid Machine Learning Approaches in Cognitive Classification

  • Shantipriya Parida
  • Satchidananda Dehuri
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 236)


The classification of functional magnetic imaging resonance (fMRI) data involves many challenges due to the problem of high dimensionality, noise, and limited training samples. In particular, mental states classification, decoding brain activation, and finding the variable of interest by using fMRI data was one of the focused research topics among machine learning researchers during past few decades. In the context of classification, algorithms have biases, i.e., an algorithm perform better in one dataset may become worse in other dataset. To overcome the limitations of individual techniques, hybridization or fusion of these machine learning techniques proposed in recent years which have shown promising result and open up new direction of research. This paper reviews the hybrid machine learning techniques used in cognitive classification by giving proper attention to their performance and limitations. As a result, various domain specific techniques are identified in addition to many open research challenges.


Functional magnetic resonance imaging Machine learning General linear model Genetic algorithm Particle swarm optimization 


  1. 1.
    McGowan, J.C.: Basic principles of magnetic resonance imaging. Neuroimaging Clin. N. Am. 18(4), 623–636 (2008)CrossRefGoogle Scholar
  2. 2.
    Savoy, R.L.: Functional magnetic resonance imaging (fMRI), Encyclopedia of Neuroscience, 2nd edn. Birkhauser, Boston, MA (1996)Google Scholar
  3. 3.
    Etzel, J.A., Gazzola, V., Keysers, C.: An introduction to anatomical ROI-based fMRI classification analysis. Brain Res. 1282, 114–125 (2009)CrossRefGoogle Scholar
  4. 4.
    Amaro Jr, E., Barker, G.J.: Study design in fMRI: basic principles. Brain Cogn. 60(3), 220–232 (2006)CrossRefGoogle Scholar
  5. 5.
    Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10(9), 424–430 (2006)CrossRefGoogle Scholar
  6. 6.
    Friman, O., Borga, M., Lundberg, P., Knutsson, H.: Detection and detrending in fMRI data analysis. NeuroImage 22(2), 645–655 (2004)CrossRefGoogle Scholar
  7. 7.
    Horwitz, B., Tagamets, M., McIntosh, A.R.: Neural modeling, functional brain imaging, and cognition. Trends Cogn. Sci. 3(3), 91–98 (1999)Google Scholar
  8. 8.
    Nielsen, F.A., Christensen, M.S., Madsen, K.H., Lund, T.E., Hansen, L.K.: fMRI Neuroinformatics. IEEE Eng. Med. Biol. Mag. 25(2), 112–119 (2006)CrossRefGoogle Scholar
  9. 9.
    Kuncheva, L.I., Plumpton, C.O.: Choosing parameters for random subspace ensembles for fMRI classification. Lect. Notes Comput. Sci. 2010(5997), 54–63 (2010)Google Scholar
  10. 10.
    Fan, Y., Shen, D., Davatzikos, C.: Detecting cognitive states from fMRI Images by machine learning and multivariate classification. In: Proceeings of Conference on Computer Vision and Pattern Recognition Workshop, IEEE Computer Society, Washington, DC, USA (2006)Google Scholar
  11. 11.
    Ryali, S., Supekar, K., Abrams, D.A., Menon, V.: Sparse logistic regression for whole-brain classification of fMRI data. NeuroImage 51(2), 752–764 (2010)CrossRefGoogle Scholar
  12. 12.
    Plumpton, C.O., Kuncheva, L.I.: On-line fMRI data classification using linear and ensemble classifier”. In: 20th International Conference Pattern Recognition, pp. 4312–4315 (2010)Google Scholar
  13. 13.
    Mitchell, T.M., Hutchinson, R., Just, M.A., Niculescu, R.S., Wang, X.: Classifying instantaneous cognitive states from fMRI data. In: American Medical Informatics Association, Symposium, pp. 465–469 (2003)Google Scholar
  14. 14.
    Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial overview. NeuroImage 45(1), S199–S209 (2009)Google Scholar
  15. 15.
    Anderson, A., Han, D., Douglas, P.K., Bramen, J., Cohen, M.S.: Real-time functional MRI classification of brain states using Markov-SVM hybrid models: Peering inside the rt-fMRI black box. In: Neural Information Processing Systems (2011)Google Scholar
  16. 16.
    Wang, Z.: A hybrid SVM-GLM approach for fMRI data analysis. NeuroImage 46(3), 608–615 (2009)CrossRefGoogle Scholar
  17. 17.
    Yang, H., Liu, J., Sui, J., Pearlson, G., Calhoun, V.D.: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification for schizophrenia. Frontiers Hum. Neurosci. 4, (2010)Google Scholar
  18. 18.
    Kharrat, A., Gasmi, K., Messaoud, M.B., Benamrane, N., Abid, M.: A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine. Leonardo J. Sci. 9(17), 71–82 (2010)Google Scholar
  19. 19.
    Sayed, EL., Dahshan, EL., Salem, Abdul- Badeeh. M., Yousin, T.H.: A hybrid technique for automatic MRI brain images classification, vol. LIV. Studia Univ. Babes. Bolyai, Romania (2009)Google Scholar
  20. 20.
    Zhang, Y., Wang, S., Wu, L.: A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO. Prog. Electromagnet. Res. 109, 325–343 (2010)CrossRefGoogle Scholar
  21. 21.
    Roussos, E., Roberts, S., Daubechies, I.: Variational Bayesian learning for wavelet independent component analysis. In: 25th Int. Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, vol. 803, 274–281 (2005)Google Scholar
  22. 22.
    Kim, D., Burge, J., Lane, T., Pearlson, G.D., Kiehl, K.A., Calhoun, V.D.: Hybrid ICA-Bayesian network approach reveals distinct effective connectivity differences in schizophrenia. NeoroImage 42(4), 1560–1568 (2008)CrossRefGoogle Scholar
  23. 23.
    Li, C., Hao, Q., Guo, W., Hu, F.: A hybrid approach for compressive neural activity detection with functional MR images. In: Proceedings of 31th IEEE Conference on Engineering in Medicine and Biology Society, pp. 4787–4790 (2009)Google Scholar
  24. 24.
    Tohka, J., Krestyannikov, E., Dinov, I.D., Graham, A.M., Shattuck, D.W., Ruotsalainen, U., Toga, A.W.: Genetic algorithms for finite mixture model based voxel classification in neuroimaging. IEEE Trans. Med. Imaging 26(5), 696–711 (2007)CrossRefGoogle Scholar
  25. 25.
    Abraham, A., Liu, H.: Swarm intelligence based rough set reduction scheme for support vector machines, In: IEEE Internationl Conference on Intelligence and Security Informatics, pp. 200–202 (2008)Google Scholar
  26. 26.
    Brodersen, K.H., Schofield, T.M., Leff, A.P., Ong, C.S., Lomakina, E.I., Buhmann, J.M., Stephan, K.E.: Generative embedding for model-based classification of fMRI data”. PLoS Comput. Biol. 7(6), e1002079 (2011)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Cheng, D. S., Bicego, M., Castellani, U., Cristani, M., Cerruti, S., Bellani, M., Rambaldelli, G., Aztori, M., Brambilla, P., Murino, V.: A hybrid generative/discriminative method for classification of regions of interest in schizophrenia brain MRI, In: Proceedings of MICCAI09 workshop on Probabilistic Models for, Medical Image Analysis (2009)Google Scholar
  28. 28.
    Zhang, Y., Wu, L., Wang, S.: Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Prog. Electromagnet. Res. 116, 65–79 (2011)Google Scholar
  29. 29.
    Jafarpour, S., Sedghi, Z., Amirani, M.C.: A robust brain MRI classification with GLCM features. Int. J. Comput. Appl. 37(12), 1–5 (2012)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Carrier Software and Core Network Huawei Technologies India Pvt LtdBangaloreIndia
  2. 2.Department of Systems EngineeringAjou UniversityYeongtong-guSouth Korea

Personalised recommendations