Multi-Objective Optimization of PID Controller for Coupled-Tank Liquid-Level Control System Using Genetic Algorithm

  • Sanjay Kr. Singh
  • Nitish Katal
  • S. G. Modani
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 236)


The main aim of this chapter is to obtain optimal gains for a PID controller using multi-objective genetic algorithm used in a coupled-tank liquid-level control system. Liquid level control system is a nonlinear system and finds a wide application in petrochemical, food processing, and water treatment industries, and the quality of control directly affects the quality of products and safety. This chapter employs the use of multi-objective genetic algorithm for the optimization of the PID gains for better plant operations in contrast to conventional tuning methods and GA. The simulations indicate that better performance is obtained in case of multi-objective genetic algorithm-optimized PID controller.


PID controller Multi-objective genetic algorithm PID optimization Liquid level control 


  1. 1.
    Bhuvaneswari, N. S., G. Uma, and T. R. Rangaswamy. "Adaptive and optimal control of a non-linear process using intelligent controllers." Applied Soft Computing 9.1 (2009): 182–190. Elsevier Ltd.Google Scholar
  2. 2.
    Capón-García, Elisabet, Espuña, Antonio, Puigjaner, Luis: Statistical and simulation tools for designing an optimal blanketing system of a multiple-tank facility. Chemical Engineering Journal 152(1), 122–132 (2009)Google Scholar
  3. 3.
    B. Seth, D.S. J, “Liquid Level Control”, Control System Laboratory (ME413), IIT Bombay (2006–07).Google Scholar
  4. 4.
    Elke Laubwald, “Coupled Tanks Systems 1”, Scholar
  5. 5.
    Åström, K. J., Albertos, P. and Quevedo, J. 2001. PID Control. Control Engineering Practice, 9,159–1161.J.Google Scholar
  6. 6.
    Norman S. Nise, 2003, Control System Engineering, 4\(^{th}\) Edition.Google Scholar
  7. 7.
    Goodwin, G.C., Graebe, S.F., Salgado, M.E.: Control System Design. Prentice Hall Inc., New Jersey (2001)Google Scholar
  8. 8.
    Larbes, C., Aït Cheikh, S. M., Obeidi, T., & Zerguerras, A. (2009). Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system. Renewable Energy, Elsevier Ltd. \(34\)(10), 2093–2100.Google Scholar
  9. 9.
    MATLAB and SIMULINK Documentation.Google Scholar
  10. 10.
    Corriou, Jean-Pierre. Process Control: Theory and Applications. Springer. 2004. Page132-133.Google Scholar
  11. 11.
    Grefenstette, J.J.: Optimization of Control Parameters for Genetic Algorithms. IEEE Trans. Systems, Man, and, Cybernetics SMC–16(1), 122–128 (1986)CrossRefGoogle Scholar
  12. 12.
    Konak, Abdullah, Coit, David W., Smith, Alice E., et al.: Multi-objective optimization using genetic algorithm. Reliability Engineering and Safety System 91, 992–1007 (2006). Elsevier LtdCrossRefGoogle Scholar
  13. 13.
    Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Transactions of the ASME. 64, 759–768 (1942)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Sanjay Kr. Singh
    • 1
  • Nitish Katal
    • 2
  • S. G. Modani
    • 3
  1. 1.Department of ECEAnand International College of EngineeringJaipurIndia
  2. 2.Department of ECEASET, Amity UniversityJaipurIndia
  3. 3.Malaviya National Institute of TechnologyJaipurIndia

Personalised recommendations