Hesitant k-Nearest Neighbor (HK-nn) Classifier for Document Classification and Numerical Result Analysis

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 236)


This paper presents new approach Hesitant k-nearest neighbor (HK-nn)-based document classification and numerical results analysis. The proposed classification HK-nn approach is based on hesitant distance. In this paper, we have used hesitant distance calculations for document classification results. The following steps are used for classification: data collection, data pre-processing, data selection, presentation, analysis, classification process and results. The experimental results are evaluated using MATLAB 7.14. The Experimental results show proposed approach that is efficient and accurate compared to other classification approach.


Hesitant k-nearest neighbor Hesitant distance Classification Data mining 



This work is supported by research grant from MPCST, Bhopal M.P., India, Endt.No. 2427/CST/R&D/2011 dated 22/09/2011.


  1. 1.
    Ritter, G.L., Woodruff, H.B., Lowry, S.R., Isenhour, T.L.: An algorithm for a selective nearest neighbor decision rule. IEEE Trans. Inf. Theory 21, 665–669 (1975)CrossRefMATHGoogle Scholar
  2. 2.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 81(11), 2278–2324 (1998)CrossRefGoogle Scholar
  3. 3.
    Hart, P.E.: Condensed nearest neighbor rule. IEEE Trans. Inf. Theory 14, 515–516 (1968)CrossRefGoogle Scholar
  4. 4.
    Farago, A., Linder, T., Lugosi, G.: Fast nearest-neighbor search in dissimilarity spaces. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 957–962 (1993)Google Scholar
  5. 5.
    Fukunaga, K., Narendra, P.M.: A branch and bound algorithm for computing k-nearest neighbors. IEEE Trans. Comput. 24(7), 750–753 (1975)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Chang, C.L.: Finding prototypes for nearest neighbor decision rule. IEEE Trans. Comput. 23(11), 1179–1184 (1974)CrossRefMATHGoogle Scholar
  7. 7.
    Vidal, E.: An algorithm for finding nearest neighbors in (approximately) constant average time. Pattern Recogn. Lett. 4(3), 145–157 (1986)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Broder, A.J.: Strategies for efficient incremental nearest neighbor search. Pattern Recogn. 23(1/2), 171–178 (1986)Google Scholar
  9. 9.
    Brown, R.L.: Accelerated template matching using template trees grown by condensation. IEEE Trans. Syst Man Cybern. 25(3), 523–528 (Mar. 1995)Google Scholar
  10. 10.
    Friedman, J.H., Baskett, F., Shustek, L.J.: An algorithm for finding nearest neighbors. IEEE Trans. Comput. 24(10), 1000–1006 (1975)CrossRefMATHGoogle Scholar
  11. 11.
    Nene, S.A., Nayar, S.K.: A simple algorithm for nearest-neighbor search in high dimension. IEEE Trans. Pattern Anal. Mach. Intell. 19(9), 989–1003 (1997)Google Scholar
  12. 12.
    Kim, B.S., Park, S.B.: A fast k nearest neighbor finding algorithm based on the ordered partition. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 761–766 (1986)CrossRefMATHGoogle Scholar
  13. 13.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)Google Scholar
  14. 14.
    Hastie, T., Tibshirani, R.: Discriminant adaptive nearest-neighbor classification. IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 607–615 (1996)CrossRefGoogle Scholar
  15. 15.
    Hunttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 19(1), 1–14 (1997)CrossRefGoogle Scholar
  16. 16.
    Puzicha, J., Buhmann, J., Rubner, Y., Tomasi, C.: Empirical evaluation of dissimilarity measures for color and textures. In: Proceedings of International Conference on Computer Vision, pp. 1165–1172 (1999)Google Scholar
  17. 17.
    Favata, J.T., Srikantan, G.: A multiple feature/resolution approach to hand printed character/digit recognition. Proc. Intl J. Imaging Syst. Technol. 7, 304–311 (1996)CrossRefGoogle Scholar
  18. 18.
    Jain, A.K., Zongker, D.: Representation and reconstruction of handwritten digits using deformable templates. IEEE Trans. Pattern Anal. Mach. Intell. 19(12), 1386–1391 (1997)CrossRefGoogle Scholar
  19. 19.
    Donahue, M., Geiger, D., Hummel, R., Liu, T.: Sparse representations for image decompositions with occlusions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7–12 (1996)Google Scholar
  20. 20.
    Tubbs, J.D.: A note on binary template matching. Pattern Recogn. 22(4), 359–365 (1989)CrossRefGoogle Scholar
  21. 21.
    Jacobs, D.W., Weinshall, D.: Classification with non-metric distances: image retrieval and class representation. IEEE Trans. Pattern Anal. Mach. Intell. 22(6), 583–600 (June 2000)Google Scholar
  22. 22.
    Zhang, B., Srihari, S.N.: Properties of binary vector dissimilarity measures. In: Proceedings of JCIS International Conference on Computer Vision, Pattern Recognition, and Image Processing (2003)Google Scholar
  23. 23.
    Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21–27 (1968)CrossRefGoogle Scholar
  24. 24.
    Neeraj, S., Thakur, G.S.: Hesitant distance similarity measures for document clustering. In: IEEE Conference World Congress on Information and Communication Technologies Mumbai, India. ISBN: 978-1-4673-0125-1, 11–14 December 2011Google Scholar
  25. 25.
    Sahu, S.K., Sahu, N, Thakur, G.S.: Classification of document clustering approaches. Int. J. Adv. Res. Comput. Sci. Softw. Eng. (IJARCSSE) ISSN (ONLINE): 2277 128X, 2(5), 509–513 (2012)Google Scholar
  26. 26.
    Sahu, B., Sahu, N., Thakur , G.S.: Architecture based users and administrator login data processing In: International Conference on Intelligent Computing and Information System (ICICIS-2012), Pachmarhi, Piparia (MP). ISSN (ONLINE): 2249–071X, Oct. 27–28 2012Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Singhania University RajasthanJhunjhunuIndia
  2. 2.MANITBhopalIndia

Personalised recommendations