TDAC: Co-Expressed Gene Pattern Finding Using Attribute Clustering

  • Tahleen A Rahman
  • Dhruba K Bhattacharyya
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 236)


An effective unsupervised method (TDAC) is proposed for identification of biologically relevant co-expressed patterns. Effectiveness of TDAC is established in comparison to its other competing algorithms over four publicly available benchmark gene expression datasets in terms of both internal and external validity measures.


Cluster Outlier Core Neighbour Co-expressed 


  1. 1.
    Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: a survey. IEEE Trans. Knowl. Data Eng. 16(11), 1370–1386 (2004)Google Scholar
  2. 2.
    Mahanta, P., Ahmed, H.A., Bhattacharyya, D.K., Kalita, J.K.: Triclustering in gene expression data analysis: A selected survey. In: Proceedings of IEEE NCETACS, pp 1–6 (2011)Google Scholar
  3. 3.
    Sarma, S., Sarma, R., Bhattacharyya, D.K.: An effective density based hierarchical clustering technique to identify coherent patterns from gene expression data. In: Proceedings of PAKDD 2011, vol. 6634, pp. 225–236 (2011)Google Scholar
  4. 4.
    Kaijun, Wang, Wang, Baijie, Peng, Liuqing: CVAP: validation for cluster analyses. Data Sci. J. 8, 88–93 (2009)CrossRefGoogle Scholar
  5. 5.
    Sharan, R., Shamir, R.: CLICK: A clustering algorithm with applications to gene expression analysis. In: Proceedings of the International Conference on Intelligent Systems for Molecular Biology, pp. 307–316. AAAI Press, Menlo Park (2000)Google Scholar
  6. 6.
    Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 153–165 (1987)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Das, R., Bhattacharyya, D.K., Kalita, J.K.: Clustering gene expression data using an effective dissimilarity measure. Int. J. Comput. Bio Sci. (Special Issue) 1(1), 55–68 (2011)Google Scholar
  8. 8.
    Berriz, F.G., et al.: Characterizing gene sets with Funcassociate. Bioinformatics 19, 2502–2504 (2003)Google Scholar
  9. 9.
    Chu, S., DeRisi, J., Eisen, M., et. al.: The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998)Google Scholar
  10. 10.
    Iyer, V.R., Eisen, M.B., Ross, D.T., et. al.: The transcriptional program in the response of the human fibroblasts to serum. Science 283, 83–87 (1999)Google Scholar
  11. 11.
    Cho, R.J., Campbell, M., Winzeler, E., Steinmetz, L., et al.: A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2(1), 65–73 (1998)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Tezpur UniversityNapaamIndia

Personalised recommendations