Studies and Evaluation of EIT Image Reconstruction in EIDORS with Simulated Boundary Data

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 236)


Simulated boundary potential data for Electrical Impedance Tomography (EIT) are generated by a MATLAB based EIT data generator and the resistivity reconstruction is evaluated with Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS). Circular domains containing subdomains as inhomogeneity are defined in MATLAB- based EIT data generator and the boundary data are calculated by a constant current simulation with opposite current injection (OCI) method. The resistivity images reconstructed for different boundary data sets and images are analyzed with image parameters to evaluate the reconstruction.


EIT Simulated boundary data EIDORS Image reconstruction Resistivity images Image parameters. 


  1. 1.
    Webster, J.G.: Electrical Impedance Tomography. Adam Hilger Series of Biomedical Engineering, Adam Hilger, New York (1990)Google Scholar
  2. 2.
    Holder, D.S., Hanquan, Y., Rao, A.: Some practical biological phantoms for calibrating multifrequency electrical impedance tomography. Physiol. Meas. 17, A167–77 (1996)CrossRefGoogle Scholar
  3. 3.
    Denyer, C.W.L., Electronics for real-time and three-dimensional electrical impedance tomographs, PhD Thesis, Oxford Brookes University (1996)Google Scholar
  4. 4.
    Bera, T. K., Nagaraju, J.: Studies on thin film based flexible gold electrode arrays for resistivity imaging in electrical impedance tomography. Measurement 47 264–286 (2014)Google Scholar
  5. 5.
    Bera, T.K., Nagaraju, J.: Studying the resistivity imaging of chicken tissue phantoms with different current patterns in Electrical Impedance Tomography (EIT). Measurement 45, 663–682 (2012)Google Scholar
  6. 6.
    Bera, T.K., Nagaraju, J.A.: Multifrequency Electrical Impedance Tomography (EIT) system for biomedical imaging. In: Proceedings of International Conference on Signal Processing and Communications (SPCOM 2012), pp. 1–5. India, IISc - Bangalore, Karnataka, India (2012)Google Scholar
  7. 7.
    Thomas, J.Y., John, G.W., Willis, J.T.: Comparng reconstruction algorthms for Electrcal Impedance Tomography. IEEE Trans. Biomed. Eng. BME-34(11), 843–852 (1987)Google Scholar
  8. 8.
    Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving conductivity image quality using Block Matrix-based Multiple Regularization (BMMR) technique in EIT: a simulation study. J. Electr. Bioimpedance 2, 33–47 (2011)Google Scholar
  9. 9.
    Jing L., Liu S., Zhihong L., Meng S., An image reconstruction algorithm based on the extended Tikhonov regularization method for electrical capacitance tomography Original Research Article. Measurement, 42(3), 368–376 (2009)Google Scholar
  10. 10.
    Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving image quality in Electrical Impedance Tomography (EIT) using Projection Error Propagation-Based Regularization (PEPR) Technique: a simulation study. J. Electr. Bioimpedance. 2, 2–12 (2011)Google Scholar
  11. 11.
    Lionheart, W.R.B.: EIT reconstruction algorithms: pitfalls, challenges and recent developments, REVIEW ARTICLE. Physiol. Meas. 25, 125–142 (2004)CrossRefGoogle Scholar
  12. 12.
    Metherall, P.: Three dimensional electrical impedance tomography of the human thorax. PhD Thesis, University of Sheffield. January (1998)Google Scholar
  13. 13.
    Bushberg, J. T., Seibert, J. A., Leidholdt Jr. E. M., Boone, J. M.(eds.): The Essential Physics of Medical Imaging, 2nd edn. Lippincott Williams and Wilkins, Philadelphia (2001)Google Scholar
  14. 14.
    David, H. (ed.).: Clinical and Physiological Applications of Electrical Impedance Tomography, 1st edn. Taylor and Francis, UK ( 1993)Google Scholar
  15. 15.
    Li, Ying et al.: A novel combination method of Electrical Impedance Tomography inverse problem for brain imaging. IEEE Trans. Magn. 41( 5) (2005)Google Scholar
  16. 16.
    Bagshaw, A.P., et al.: Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. NeuroImage 20, 752–764 (2003)CrossRefGoogle Scholar
  17. 17.
    Murphy, D., Burton, P., Coombs, R., Tarassenko, L., Rolfe, P.: Impedance imaging in the newborn. Clin. Phys. Physiol. Meas. Suppl. A, 8, 131–40 (1987)Google Scholar
  18. 18.
    Hope, T. A., Iles, S. E.: Technology review: the use of electrical impedance scanning in the detection of breast cancer. Breast. Cancer. Res. 6, 69–74 (2004)Google Scholar
  19. 19.
    Brown, B. H.: Medical impedance tomography and process impedance tomography: a brief review. Meas. Sci. Technol. 12, pp. 991–996 (2001)Google Scholar
  20. 20.
    Linderholm, Pontus et al.: Cell culture imaging using Microimpedance Tomography. IIEEE Trans. Biomed. Eng. 551 (2008)Google Scholar
  21. 21.
    Bera, T. K., Nagaraju, J. A.: Multifrequency constant current source for medical Electrical Impedance Tomography. In: Proceedings of the IEEE International Conference on Systems in Medicine and Biology 2010, pp. 278–283. Kharagpur, India (2010)Google Scholar
  22. 22.
    Bera, T.K., Nagaraju, J.: Surface electrode switching of a 16-Electrode wireless EIT system using RF-based digital data transmission scheme with 8 channel encoder/decoder ICs. Measurement 45, 541–555 (2012)Google Scholar
  23. 23.
    Manuchehr, S.: Electrical impedance tomography system: an open access circuit design. BioMed. Eng. OnLine. 5(28), 1–8 (2006)Google Scholar
  24. 24.
    Bera, T.K., Nagaraju, J.: Switching of a sixteen electrode array for wireless EIT system using a RF-based 8-Bit digital data transmission technique. Commun. Comput. Inform. Sci. 269, 202–211 (2012)Google Scholar
  25. 25.
    Tong, I.O., Hun, W., Do, Y.K., Pil, J.Y., Eung J.W.: A fully parallel multi-frequency EIT system with flexible electrode configuration: KHU Mark2. Physiol. Meas. 32(7), 835–49 (2007)Google Scholar
  26. 26.
    Bera, T.K., Nagaraju, J.: Switching of the surface electrodes array in a 16-electrode EIT system using 8-bit parallel digital data. In: Proceedings of IEEE World Congress on Information and Communication Technologies, pp. 1288–1293. Mumbai, India (2011)Google Scholar
  27. 27.
    Bera, T.K., Nagaraju, J.A.: Chicken tissue phantom for studying an Electrical Impedance Tomography (EIT) system suitable for clinical imaging, sensing and imaging. Int. J. 12( 3–4), 95–116 (2011)Google Scholar
  28. 28.
    Bera, T.K., Nagaraju, J.: Resistivity imaging of a reconfigurable phantom with circular inhomogeneities in 2D-Electrical Impedance Tomography. Measurement 44(3), 518–526 (2011)Google Scholar
  29. 29.
    Bera, T.K., Nagaraju, J.: A reconfigurable practical phantom for studying the 2 D Electrical Impedance Tomography (EIT) using a FEM based forward solver. In: Proceedings of the 10th International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT 2009), Manchester (2009)Google Scholar
  30. 30.
    Bera, T.K., Nagaraju, J. A.: Study of practical biological phantoms with simple instrumentation for Electrical Impedance Tomography (EIT). In: Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC2009), pp. 511–516. Singapore (2009)Google Scholar
  31. 31.
    Bera, T.K., Nagaraju, J.A.: Simple instrumentation calibration technique for Electrical Impedance Tomography (EIT) Using A 16 Electrode Phantom.In: Proceedings of the 5th Annual IEEE Conference on Automation Science and Engineering, pp. 347–52. Bangalore (2009)Google Scholar
  32. 32.
    Bera, T. K., Nagaraju, J.: Studying The 2D Resistivity reconstruction of stainless steel electrode phantoms using different current patterns of Electrical Impedance Tomography (EIT). In: Proceedings of the International Conference on Biomedical Engineering, Biomedical Engineering, Narosa Publishing House, India, pp. 163–169 (2011)Google Scholar
  33. 33.
    Bera, T.K., Nagaraju J.: Studying the 2D-image reconstruction of non biological and biological inhomogeneities in Electrical Impedance Tomography (EIT) with EIDORS. In: Proceedings of the International Conference on Advanced Computing, Networking and Security: ADCONS 2011. India, NITK—Surathkal, India, 132–136 (2011)Google Scholar
  34. 34.
    Jochen, H., Leonard, M., Reindl.: A computer simulation platform for the estimation of measurement uncertainties in dimensional X-ray computed tomography, Measurement. 45(8), 2166–2182 (2012)Google Scholar
  35. 35.
    Harvey, G., Jan, T., Wolfgang, C.: An Introduction to Computer Simulation Methods: Applications to Physical Systems (3rd Edn.), Addison-Wesley (January 19, 2006)Google Scholar
  36. 36.
    Tushar, K.B., Nagaraju, J.: A MATLAB Based Boundary Data Simulator for Studying The Resistivity Reconstruction Using Neighbouring Current Pattern, J. Med. Eng. vol. 2013, Article ID 193578, p. 15Google Scholar
  37. 37.
    Zlochiver, S., Radai, M.M., Abboud, S., Rosenfeld, M., Dong, X.Z., Liu, R.G., You, F.S., Xiang, H.Y., Shi, X.T.: Induced current electrical impedance tomography system: experimental results and numerical simulations. Physiol. Meas. 25(1), 239–255 (2004)Google Scholar
  38. 38.
    Sadleir, R.J., Sajib, S.Z., Kim, H.J., Kwon, O.I., Woo, E.J.: Simulations and phantom evaluations of magnetic resonance electrical impedance tomography (MREIT) for breast cancer detection, J. Magn. Reson. 230, 40–9 (2013)Google Scholar
  39. 39.
    Vauhkonen, M., Lionheart W.R.B., Heikkinen, L .M., Vauhkonen, P. J., Kaipio, J. P.: A MATLAB package for the EIDORS project to reconstruct two dimensional EIT images. Physiol. Meas. 22, 107–111 (2001)Google Scholar
  40. 40.
    Bera, T.K., Biswas, S.K., Rajan,K., Nagaraju, J.: Image reconstruction in Electrical Impedance Tomography (EIT) with Projection Error Propagation-based Regularization (PEPR). In: A Practical PhantomStudy, LectureNotes inComputer Science:ADCONS 2011, vol. 7135/2012, pp. 95–105. Springer (2012)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of Instrumentation and Applied PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations