Advertisement

Computing Vectors Based Document Clustering and Numerical Result Analysis

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 236)

Abstract

This paper presents new approach analytical results of document clustering for vectors. The proposed analytical results of document clustering for vectors approach is based on mean clusters. In this paper we have used six iterations \(\text {I}_{1}\) to \(\text {I}_{6}\) for document clustering results. The steps Document collection, Text Pre-processing, Feature Selection, Indexing, Clustering Process and Results Analysis are used. Twenty news group data sets are used in the experiments. The experimental results are evaluated using the numerical computing MATLAB 7.14 software. The experimental results show the proposed approach out performs.

Keywords

Mean clusters Clustering technique Vectors and iterations 

Notes

Acknowledgments

This work is supported by research grant from MPCST, Bhopal M.P., India, Endt.No. 2427/CST/R&D/2011 dated 22/09/2011.

References

  1. 1.
    Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Euclidean k-median and related problems. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, May 1998, pp. 106–113Google Scholar
  2. 2.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Comm. ACM 18, 509–517 (1975)CrossRefMATHGoogle Scholar
  3. 3.
    Bradley, P.S., Fayyad, U.: Refining initial points for k-means clustering. In: Proceedings of the 15th International Conference on Machine Learning, 1998, pp. 91–99Google Scholar
  4. 4.
  5. 5.
    Dasgupta, S.: Learning mixtures of Gaussians. In: Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, Oct 1999, pp. 634–644Google Scholar
  6. 6.
    Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tesselations: Applications and algorithms. SIAM Rev. 41, 637–676 (1999)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Agarwal, P.K., Procopiuc, C.M.: Exact and approximation algorithms for clustering. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, Jan 1998, pp. 658–667Google Scholar
  8. 8.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)MATHGoogle Scholar
  9. 9.
    Faber, V.: Clustering and the continuous k-means algorithm. Los Alamos Sci. 22, 138–144 (1994)Google Scholar
  10. 10.
    Arya, S., Mount, D.M.: Approximate range searching. Comput. Geom. Theor. Appl. 17, 135–163 (2000)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Forgey, E.: Cluster analysis of multivariate data: efficiency versus interpretability of classification. Biometrics 21, 768 (1965)Google Scholar
  12. 12.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, Cambridge (1996)Google Scholar
  13. 13.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, Boston (1990)MATHGoogle Scholar
  14. 14.
    Ball, G.H., Hall, D.J.: Some fundamental concepts and synthesis procedures for pattern recognition preprocessors. In: Proceedings of the International Conference on Microwaves, Circuit Theory, and Information Theory, Sept 1964Google Scholar
  15. 15.
    Dasgupta, S., Shulman, L.J.: A two-round variant of EM for Gaussian mixtures. In: Procedings of the 16th Conference on Uncertainty in Artificial Intelligence (UAI-2000), June 2000, pp. 152–159Google Scholar
  16. 16.
    Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn. Wiley, New York (1968)MATHGoogle Scholar
  17. 17.
    Alsabti, K., Ranka, S., Singh, V.: An Efficient k-means clustering algorithm. In: Proceedings of the First Workshop High Performance Data Mining, Mar 1998Google Scholar
  18. 18.
    Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching. J. ACM 45, 891–923 (1998)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Bottou, L., Bengio, Y.: Convergence properties of the k-means algorithms. In: Tesauro, G., Touretzky, D. (eds.) Advances in Neural Information Processing Systems 7, pp. 585–592. MIT Press, Cambridge (1996)Google Scholar
  20. 20.
    Coggins, J.M., Jain, A.K.: A spatial filtering approach to texture analysis. Pattern Recognit. Lett. 3, 195–203 (1985)CrossRefGoogle Scholar
  21. 21.
    Ester, M., Kriegel, H., Xu, X.: A database interface for clustering in large spatial databases. In: Procedings of the First International Conference on Knowledge Discovery and Data Mining (KDD-95), 1995, pp. 94–99Google Scholar
  22. 22.
    Neeraj, S., Thakur, G.S. : Hesitant distance similarity measures for document clustering. In: IEEE Conference—2011 World Congress on Information and Communication Technologies Mumbai, 11–14 Dec 2011. ISBN: 978-1-4673-0125-1Google Scholar
  23. 23.
    Sahu, S.K., Sahu, N., Thakur, G.S.: Classification of document clustering approaches. Intl. J. Comput. Sci. Softw. Eng. 2(5), 509–513 (2012). ISSN (Online): 2277 128XGoogle Scholar
  24. 24.
    Sahu, B., Sahu, N., Thakur, G.S.: Architecture based users and administrator login data processing. In: International Conference on Intelligent Computing and Information System (ICICIS-2012), Pachmarhi, Piparia, 27–28 Oct 2012. ISSN (Online): 2249–071XGoogle Scholar
  25. 25.
    Bradley, P.S., Fayyad, U., Reina, C.: Scaling clustering algorithms to large databases. In: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, 1998, pp. 9–15Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Singhania University RajasthanRajasthanIndia
  2. 2.MANITBhopalIndia

Personalised recommendations