Search Result Clustering Through Expectation Maximization Based Pruning of Terms

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 236)


Search Results Clustering (SRC) is a well-known approach to address the lexical ambiguity issue that all search engines suffer from. This paper develops an Expectation Maximization (EM)-based adaptive term pruning method for enhancing search result analysis. Knowledge preserving capabilities of this approach are demonstrated on the AMBIENT dataset using Snowball clustering method.


Information retrieval Clustering FPtree Expectation maximization 


  1. 1.
    Bernardini, A., Carpineto, C., D’Amico, M.: Full-subtopic retrieval with keyphrase-based search results clustering. In: Proceedings of Web Intelligence 2009, IEEE Computer Society, pp. 206–213 Milan (2009)Google Scholar
  2. 2.
    Carpineto, C., Osinski, S., Romano, G., Weiss, D.: A survey of web clustering engines. ACM. Comput. Surv. (CSUR) 41(3) (2009). Article No. 17. ISSN:0360–0300Google Scholar
  3. 3.
    Dempster, A.P., Laird, N.M., Rubin, D.R.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–38 (1977)Google Scholar
  4. 4.
    Fung, B., Wang, K., Ester, M.: Hierarchical document clustering using frequent itemsets. In: Proceedings of SIAM International Conference on Data Mining, pp. 59–70 (2003)Google Scholar
  5. 5.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generations. In: Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, TX, USA (2000)Google Scholar
  6. 6.
    Hima Bindu K., Raghavendra Rao C.: Association rule centric clustering of web search results. In: Proceedings of MIWAI’11, Vol. 7080/2011, pp. 159–168, Hyderabad (2011). doi: 10.1007/978-3-642-25725-4_14
  7. 7.
    Kamvar, M., Baluja, S.: A large scale study of wireless search behavior: google mobile search. In: Proceedings of CHI’06, pp. 701–709, NewYork (2006)Google Scholar
  8. 8.
    Manning, C. D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge University press, New York, USA (2008)Google Scholar
  9. 9.
    Osinski, S., Stefanowski, J., Weiss, D.: Lingo: Search results clustering algorithm based on singular value decomposition. In: Proceedings of the International Intelligent Information Processing and Web Mining Conference. Advances in Soft Computing, Springer, 359–368 (2004)Google Scholar
  10. 10.
    Pawlak, Z.: Rough Sets—Theoretical Aspects of Reasoning about Data. Kluwer, Boston (1991)Google Scholar
  11. 11.
    Rand, W. M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)Google Scholar
  12. 12.
    Scaiella, U., Ferragina, P., Marino, A., Ciaramita, M.: Topical clustering of search results. In: Proceedings of WSDM 2012, pp. 223–232. ACM, New York (2012)Google Scholar
  13. 13.
    Taghavi, M., et al.: An analysis of web proxy logs with query distribution pattern approach for search engines. Comput. Stand. Interfaces. 162–170 (2011). doi: 10.1016/j.csi.2011.07.001
  14. 14.
    Wajahat Ali, M. S., Raghavendra Rao, C., Bhagvati, C., Deekshatulu, B. L.: EMTrain++: EM based incremental training algorithm for high accuracy printed character recognition system. Int. J. Comput. Intell. Res. 5(46), 365–371 (2010)Google Scholar
  15. 15.
    Zamir, O. And Etzioni, O.: Web document clustering: A feasibility demonstration. In: Proceedings of the 21st International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, 46–54 (1998)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of Computer and Information SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations