Methods for Estimation of Structural State of Alkali Feldspars

  • T. N. Jowhar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 236)


There is much interest in characterizing the variations in feldspar structures because of the abundance and importance of feldspars in petrologic processes and also due to their general significance in mineralogical studies of exsolution and polymorphism, especially order-disorder. With the appearance of new analytical and rapid methods of X-ray crystallographic study and computational techniques, the significance of feldspars in igneous and metamorphic rocks has increased tremendously. In this paper methods for estimation of structrural state of alkali feldspars is reviewed and discussed.


Alkali feldspars X-ray crystallography Lattice parameters Structural state Al-Si distribution 



Professor Ram S. Sharma and Professor V. K. S. Dave provided tremendous inspiration for this research work. The facilities and encouragement provided by Professor Anil K. Gupta, Director, Wadia Institute of Himalayan Geology, Dehradun, to carry out this research work is thankfully acknowledged.


  1. 1.
    Smith, J.V.: Feldspar minerals. Crystal Structure and Physical Properties, vol. 1, p. 627. Springer, Berlin (1974a)Google Scholar
  2. 2.
    Smith, J.V.: Feldspar minerals. Chemical and Textural Properties, vol. 2, p. 690. Springer, Berlin (1974b)Google Scholar
  3. 3.
    Smith, J.V., Brown, W.L.: Feldspar minerals. Crystal Structures, Physical, Chemical and Microtextural Properties,vol. 1, Second revised and extended edition, p. 828. Springer, Berlin (1988)Google Scholar
  4. 4.
    Barth, T.F.W.: Feldspars, p. 261. John Wiley, New York (1969)Google Scholar
  5. 5.
    Laves, F.: Phase relations of the alkali feldspars I and II. J. Geol. 60(436–450), 549–574 (1952)CrossRefGoogle Scholar
  6. 6.
    Jowhar, T.N.: AFEL, a fortran IV computer program for calculating lattice parameters and distribution of aluminium in tetrahedral sites of alkali feldspars. Comput. Geosci. 7, 407–413 (1981)CrossRefGoogle Scholar
  7. 7.
    Jowhar, T.N.: Determination of lattice parameters and structural state of alkali feldspars—a rapid X-ray diffraction method. Indian J. Earth Sci. 16, 173–177 (1989)Google Scholar
  8. 8.
    Jowhar, T.N.: Crystal parameters of K-feldspar and geothermometry of Badrinath crystalline complex, Himalaya, India. Neues Jahrb. Mineral. Abh. 166, 325–342 (1994)Google Scholar
  9. 9.
    Jowhar, T.N.: Refinement of the alkali feldspar-muscovite geothermometer and its application to the Badrinath crystalline complex, Himalaya, India. Indian Mineral. 32, 7–20 (1998)Google Scholar
  10. 10.
    Jowhar, T.N.: Geobarometric constraints on the depth of emplacement of granite from the Ladakh batholith, northwest Himalaya, India. J. Mineral. Petrol. Sci. 96, 256–264 (2001)Google Scholar
  11. 11.
    Jowhar, T.N., Verma, P.K.: Alkali feldspars from the Badrinath crystalline complex and their bearing on the Himalayan metamorphism. Indian Mineral. 29, 1–12 (1995)Google Scholar
  12. 12.
    Kaur, M., Chamyal, L.S., Sharma, N., Jowhar, T.N.: Geothermometry of the granitoids of eastern higher kumaun Himalaya, India. J. Geolog. Soc. India 53, 211–217 (1999)Google Scholar
  13. 13.
    Pandey, P., Rawat, R.S., Jowhar, T.N.: Structural state transformation in alkali feldspar: evidence for post-crystallisation deformation from a proterozoic granite kumaun Himalaya, India. J. Asian Earth Sci. 25, 611–620 (2005)Google Scholar
  14. 14.
    Phillips, M.W., Ribbe, P.H.: The structures of monoclinic potassium-rich feldspars. Am. Mineral. 58, 263–270 (1973)Google Scholar
  15. 15.
    Smith, J.V., Bailey, S.W.: Second review of Al-O and Si-O tetrahedral distances. Acta Crystallogr. 16, 801–811 (1963)CrossRefGoogle Scholar
  16. 16.
    Jones, J.B.: Al-O and Si-O tetrahedral distances in alumino-silicate framework structures. Acta Crystallogr. B24, 355–358 (1968)CrossRefGoogle Scholar
  17. 17.
    Ribbe, P.H., Gibbs, G.V.: Statistical analysis and discussion of mean Al/Si-O bond distances and the aluminium content of tetrahedra in feldspars. Am. Mineral. 54, 85–94 (1969)Google Scholar
  18. 18.
    Wright, T.L.: X-ray and optical study of alkali feldspar: II. An X-ray method for determining the composition and structural state from measurement of \(2\theta \) values for three reflections. Am. Mineral. 53, 88–104 (1968)Google Scholar
  19. 19.
    Mackenzie, W.S.: The orthoclase-microcline inversion. Mineral. Mag. 30, 354–366 (1954)CrossRefGoogle Scholar
  20. 20.
    Goldsmith, J.R., Laves, F.: The microcline-sanidine stability relations. Geochim. Cosmochim. Acta 5, 1–19 (1954)CrossRefGoogle Scholar
  21. 21.
    Christie, O.H.J.: Feldspar structure and equilibrium between plagioclase and epidote. Am. J. Sci. 260, 149–153 (1962)CrossRefGoogle Scholar
  22. 22.
    Ragland, P.C.: Composition and structural state of the potassic phase in perthites as related to petrogenesis of a granitic pluton. Lithos 3, 167–189 (1970)CrossRefGoogle Scholar
  23. 23.
    Kroll, H.: Determination of Al. Si distribution in alkali feldspars from X-ray powder data. Neues Jahrb. Mineral. Monatsh. 91–94 (1971)Google Scholar
  24. 24.
    Kroll, H.: Estimation of the Al, Si distribution of feldspars from the lattice translations Tr \(\left[ 110 \right]\) and Tr \(\left[ {1\bar{{1}}0} \right]\). I. alkali feldspars. Contrib. Miner. Petrol. 39, 141–156 (1973)CrossRefGoogle Scholar
  25. 25.
    Kroll, H.: Estimation of the Al, Si distribution of alkali feldspars from the lattice translations Tr \(\left[ 110 \right]\) and Tr \(\left[ {1{\bar{1}}0} \right]\). Revised diagrams. Neues Jahrb. Mineral. Monatsh., 31–36 (1980)Google Scholar
  26. 26.
    Stewart, D.B., Wright, T.L.: Al/Si order and symmetry of natural alkali feldspars and the relationship of strained cell parameters to bulk composition. Bull. Soc. Franc. Miner. Cristall. 97, 356–377 (1974)Google Scholar
  27. 27.
    Kroll, H., Ribbe, P. H.: Lattice parameters, composition and Al, Si order in alkali feldspars. In: Ribbe, P. H. (ed.) Feldspar Mineralogy, Mineralogical Society of America, Reviews in Mineralogy, vol. 2, Second Edition, pp. 57–99 (1983)Google Scholar
  28. 28.
    Mackenzie, W.S., Smith, J.V.: The alkali feldspars I. orthoclase-microperthites. Am. Mineral. 40, 707–732 (1955)Google Scholar
  29. 29.
    Smith, J. V.: Cell dimensions \(\text{ b }^{\ast },\text{ c }^{\ast },{\alpha }^{\ast }, {\gamma }^{\ast }\) of alkali feldspar permit qualitative estimates of Si, Al ordering: albite ordering process (Abstract), Geological Society of America Meeting, Mexico, p. 283 (1968)Google Scholar
  30. 30.
    Stewart, D.B., Ribbe, P.H.: Structural explanation for variations in cell parameters of alkali feldspar with Al/Si ordering. Am. J. Sci. 267–A, 444–462 (1969)Google Scholar
  31. 31.
    Blasi, A.: Different behaviour of \({\Delta (bc)}\) and \({\Delta (b^{{\ast }}\text{ c }^{\ast })}\) in alkali feldspar. Neues Jahrb. Mineral. Abh. 138, 109–121 (1980)Google Scholar
  32. 32.
    Kroll, H., Ribbe, P.H.: Determining (Al, Si) distribution and strain in alkali feldspars using lattice parameters and diffraction peak positions: a review. Am. Mineral. 72, 491–506 (1987)Google Scholar
  33. 33.
    Wright, T.L., Stewart, D.B.: X-ray and optical study of alkali feldspar: I. Determination of composition and structural state from refined unit-cell parameters and 2V. Am. Mineral. 53, 38–87 (1968)Google Scholar
  34. 34.
    Orville, P.M.: Unit-cell parameters of the microcline-low albite and the sanidine-high albite solid solution series. Am. Mineral. 52, 55–86 (1967)Google Scholar
  35. 35.
    Ribbe, P.H., Gibbs, G.V.: Statistical analysis of Al/Si distribution in feldspars. Trans. Am. Geophys. Union 11, 229–230 (1967)Google Scholar
  36. 36.
    Thompson Jr, J.B., Hovis, G.L.: Triclinic feldspars: angular relations and the representation of feldspar Series. Am. Mineral. 63, 981–990 (1978)Google Scholar
  37. 37.
    Thompson Jr, J.B.: Chemical reactions in crystals. Am. Mineral. 54, 341–375 (1969)Google Scholar
  38. 38.
    Jowhar, T.N.: Computer programs for P-T calculations and construction of phase diagrams: Use of TWQ, WEBINVEQ and THERMOCALC. In: Rajan, S., Pandey, P.C. (eds.) Antarctic Geoscience, Ocean-Atmosphere Interaction and Paleoclimatology, National Centre for Antarctic and Ocean Research, Goa, pp.248–262 (2005)Google Scholar
  39. 39.
    Jowhar, T.N.: Computer programs for P-T history of metamorphic rocks using pseudosection approach. Int. J. Comput. Appl. Technol. 41, 18–25 (2012)Google Scholar
  40. 40.
    Azaroff, L.V.: Elements of X-ray Crystallography. McGraw Hill Book Company, New York (1968)Google Scholar
  41. 41.
    Appleman, D.E., Evans, H.T., Jr.: Job 9214: Indexing and least-squares refinement of powder diffraction data. Document PB 216 188, National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia (1973)Google Scholar
  42. 42.
    Benoit, P.H.: Adaptation to microcomputer of the appleman-evans program for indexing and least squares refinement of powder diffraction data for unit cell dimensions. Am. Mineral. 72, 1018–1019 (1987)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Wadia Institute of Himalayan GeologyDehradunIndia

Personalised recommendations