Microbial Endophytes: Future Challenges

  • Charles W. Bacon
  • Dorothy M. Hinton


Endophytes are represented by a diverse group of prokaryotic (bacteria or cyanobacteria) or eukaryotic (fungi or parasitic vascular plants) organisms that form lifelong associations within tissues of plants. Ecologically, these associations are viewed as mutualistic and as sources of secondary metabolites capable of serving as novel medicinals and agrichemicals. It is this area that serve to stimulate the large research investigations from all parts of the planet. The challenges as we see them are multifaceted. These include an understanding of the genetics nature of microbial endophytes, how endophytes communicate and partition themselves within hosts, how do these biotrophic organisms obtain nutrients, and are specific nutrient acquisitions key to the final effects observed? Further, are there basic difference between bacterial endophytes and fungal endophytes? What influence the host interactions to produce the desired effects, and how is the stability of the system affected. Thus, future challenges are dependent on identifying, delineating, dissecting, and defining the mechanisms whereby hosts and their symbionts accomplish this curious lifestyle. Defining these biological mechanisms will ensure the present and future successful technological applications of microbial endophytes.


Endophytic Fungus Ergot Alkaloid Fungal Endophyte Bacterial Endophyte Endophytic Association 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arechavaleta M, Bacon CW, Plattner RD et al (1992) Accumulation of ergopeptide alkaloids in symbiotic tall fescue grown under deficits of soil water and nitrogen fertilizer. Appl Environ Microbiol 58:857–861PubMedGoogle Scholar
  2. Bacon CW (1985) A chemically defined medium for the growth and synthesis of ergot alkaloids by the species of Balansia. Mycologia 77:418–423CrossRefGoogle Scholar
  3. Bacon CW (1988) Procedure for isolating the endophyte from tall fescue and screening isolates for ergot alkaloids. Appl Environ Microbiol 54:2615–2618PubMedGoogle Scholar
  4. Bacon CW, Porter JK, Robbins JD et al (1977) Epichloe typhina from toxic tall fescue grasses. Appl Environ Microbiol 34:576–581PubMedGoogle Scholar
  5. Bacon CW, Hinton DM, Mitchell TR et al (2012) Characterization of endophytic strains of Bacillus Mojavensis and their production of surfactin isomers. Biol Control 62:1–9CrossRefGoogle Scholar
  6. Bailly J, Fraissinet-Tachet L, Verner M-C (2007) Soil eukaryotic functional diversity, a metatranscriptomic approach. ISME J 1:632–642PubMedCrossRefGoogle Scholar
  7. Bashyal B, Li JY, Strobel G et al (1999) Seimatoantlerium nepalense, an endophytic taxol producing coelomycete from himalayan yew (Taxus Wallachiana). Mycotaxon 72:33–42Google Scholar
  8. Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580PubMedCrossRefGoogle Scholar
  9. Draper J, Rasmussen S, Zubair H (2011) Metabolite analysis and metabolomics in the study of biotrophic interactions between plants and microbes. In: Biology of plant metabolomics, Blackwell Publishing, Oxford. Ann Plant Rev 43:1–24Google Scholar
  10. Duang LM, Jeewon R, Lumyoung S et al (2006) DGGE coupled with ribosomal DNA phylogenies reveal uncharacterized fungal phylotypes on living leaves of Magnolia Liliifera. Fungal Divers 23:121–138Google Scholar
  11. Felitti S, Shields K, Ramsperger M et al (2006) Transcriptome analysis of Neotyphodium and Epichloe grass endophytes. Fungal Genet Biol 43:465–475PubMedCrossRefGoogle Scholar
  12. Findlay JA, Buthelezi S, Lavoie R et al (1995) Bioactive isocoumarins and related metabolites from conifer endophytes. J Nat Prod 58:1759–1766PubMedCrossRefGoogle Scholar
  13. Germida JJ, Siciliano SD, De Freitas JR (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus) and wheat (Triticum aestivum). FEMS Microbiol Ecol 26:43–50CrossRefGoogle Scholar
  14. Guo LD, Hyde KD, Liew ECY (2000) Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Mol Phylogenet Evol 20:1–13CrossRefGoogle Scholar
  15. Hallmann J (2001) Plant interactions with endophytic bacteria. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant-pathogen associations. CABI Publishing, New York, pp 87–119CrossRefGoogle Scholar
  16. Hallmann J, Quadt-Hallmann A, Mahaffee WF et al (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  17. Handelman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685CrossRefGoogle Scholar
  18. Hoff JA, Klopfenstein NB, McDonald GI (2004) Fungal endophytes in woody roots of Douglas-fir (Pseudotsuga menziesii) and Ponderosa pine (Pinus ponderosa). For Pathol 34:255–271CrossRefGoogle Scholar
  19. Hunt MG, Rasmussen S, Newton PCD et al (2005) Near-term impacts of elevated CO2, nitrogen and fungal endophyte-infection on Lolium perenne L. growth, chemical composition and alkaloid production. Plant Cell Environ 28:1345–1354CrossRefGoogle Scholar
  20. Imada C, Koseki N, Kmata M et al (2007) Isolation and characterization of antibacterial substances produced by marine actinomycetes in the presence of seawater. Actinomycetologica 21:27–31CrossRefGoogle Scholar
  21. Klitgord N, Segre D (2010) Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 6:e1001002PubMedCrossRefGoogle Scholar
  22. Li QY, Zu YG, Shi RZ et al (2006) Review camptothecin: current perspectives. Curr Med Chem 13:2021–2039PubMedCrossRefGoogle Scholar
  23. Lin FC, Liu XH, Wang KK et al (2003) Recent research and prospect on taxol and its producing fungi. Appl Microbiol Biotechnol 86:1701–1717Google Scholar
  24. Liu K, Ding X, Chen CL (2006) Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind Microbiol Biotechnol 43:534–538Google Scholar
  25. Lyons PC, Evans JJ, Bacon CW (1990) Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue. Plant Physiol 92:726–732PubMedCrossRefGoogle Scholar
  26. Matsumura H, Reich S, Ito A et al (2003) Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc Natl Acad Sci U S A 100:15718–15723PubMedCrossRefGoogle Scholar
  27. Mei C, Flinn BS (2010) The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Patents Biotech 4:81–95CrossRefGoogle Scholar
  28. Mundy J, Nielsen HB, Brodersen P (2006) Crosstalk. Trends Plant Sci 11:63–64PubMedCrossRefGoogle Scholar
  29. Murray FR, Latch GCM, Scott DB (1992) Surrogate transformation of perennial ryegrass Lolium perenne, using genetically modified Acremonium endophyte. Mol Gen Genet 233:1–9PubMedCrossRefGoogle Scholar
  30. Parish JA, McCann MA, Watson RH et al (2003a) Use of nonergot alkaloid-producing endophytes for alleviating tall fescue toxicosis in sheep. J Anim Sci 81:1316–1322PubMedGoogle Scholar
  31. Parish JA, McCann MA, Watson RH et al (2003b) Use of nonergot alkaloid-producing endophytes for alleviating tall fescue toxicosis in stocker cattle. J Anim Sci 81:2856–2868PubMedGoogle Scholar
  32. PatentStorm (2013) Endophytes. Accessed 29 Jan 2013
  33. Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, Van Den Heuvel J (eds) Microbiology of the phyllosphere. Cambridge University Press, Cambridge, pp 175–187Google Scholar
  34. Petrini O (1990) Endophytic fungi in British ericaceae: a preliminary study. Trans Br Mycol Soc 83:510–512CrossRefGoogle Scholar
  35. Petrini LE, Petrini O (1989) Recovery of endophytes of Abies balsamea from needles and galls of Paradiplosis tumifex. Phytoprotection 70:97–103Google Scholar
  36. Pirttila AM, Laukkanen H, Pospiech H et al (2000) Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66:3073–3077PubMedCrossRefGoogle Scholar
  37. Priti V, Ramesha BT, Sing S et al (2009) Opinion: how promising are endophytic fungi as alternative sources of plant secondary metabolites? Curr Sci 97:477–478Google Scholar
  38. Rasmussen S, Parsons AJ, Liu Q, Xue H et al (2007) High nutrient supply and carbohydrate content reduce endophyte and alkaloid concentration. In: Popay AJ, Thom ER (eds) Proceedings of the 16th international symposium on fungal endophytes of grasses. New Zealand Grassland Research Association, Dunedin, pp 135–138Google Scholar
  39. Rasmussen S, Parson AJ, Newman JA (2009) Metabolomics analysis of the lolium perenne-Neotyphodium lolii symbiosis: more than just alkaloids? Phytochem Rev 8:535–550CrossRefGoogle Scholar
  40. Rasmussen S, Parsons AJ, Fraser K et al (2012) High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne. Plant Physiol 146:1440–1453CrossRefGoogle Scholar
  41. Rodriguez RJ, White JF Jr, Arnold AE et al (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330PubMedCrossRefGoogle Scholar
  42. Saikkonen K, Wali P, Helander M et al (2001) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280CrossRefGoogle Scholar
  43. Schardl CL (1994) Molecular and genetic methodologies and transformation of grass endophytes. In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, pp 151–165Google Scholar
  44. Schardl CL, Moon CD (2003) Processes of species evolution in Ephchloe/Neotyphodium endophytes of grasses. In: White JF Jr, Bacon CW, Hywel-Jones NL, Spatafora JW (eds) Clavicipitalean fungi. Marcel Dekker, New York, pp 273–310Google Scholar
  45. Schardl CL, Phillips TD (1997) Protective grass endophytes: where are they from and where are they going. Plant Dis 81:430–438CrossRefGoogle Scholar
  46. Schulz B, Guske S, Dammann U (1998) Endophyte host interactions II. Defining symbiosis of the endophyte-host interaction. Symbiosis 25:213–227Google Scholar
  47. Scott B, Schardl C (1993) Fungal symbionts of grasses: evolutionary insights and agricultural potential. Trends Microbiol 1:196–200PubMedCrossRefGoogle Scholar
  48. Soliman SSM, Tsao R, Raizada MN (2011) Chemical inhibitors suggests endophytic fungal paclitaxel is derived from both mevalonate and non-mevalonate-like pathways. J Nat Prod 74:2497–2504PubMedCrossRefGoogle Scholar
  49. Southcott KA, Johnson JA (1997) Isolation of endophytes from two species of palm, from Bermuda. Can J Microbiol 43:789–792CrossRefGoogle Scholar
  50. Stierle AA, Stierle DB (2005) Bioprospecting in the Berkeley pit: bioactive metabolites from acid mine waste extremophiles. Stud Nat Prod Chem 32:1123–1175CrossRefGoogle Scholar
  51. Strobel GA (2002) Rainforest endophytes and bioactive compounds. Crit Rev Biotechnol 22:315–333PubMedCrossRefGoogle Scholar
  52. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502PubMedCrossRefGoogle Scholar
  53. Strobel G, Yang XS, Sears J et al (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 142:435–440PubMedCrossRefGoogle Scholar
  54. Strobel GA, Miller RV, Martinez-Miller C et al (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926PubMedCrossRefGoogle Scholar
  55. Strobel GA, Daisy B, Castillo U et al (2004) Natural products from endophytic microorganisms. J Nat Prod 67:268CrossRefGoogle Scholar
  56. Suryanarayanan TS, Kumaresan V (2000) Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol Res 104:1465–1467CrossRefGoogle Scholar
  57. Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the Mangrove Rhizophora. Can J Microbiol 44:1003–1006Google Scholar
  58. Tanaka A, Tapper B, Popay AJ et al (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050PubMedCrossRefGoogle Scholar
  59. Tanaka A, Christensen MJ, Takemoto D et al (2006) Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066PubMedCrossRefGoogle Scholar
  60. Tanaka A, Christensen MJ, Takemoto D et al (2007) Endophyte production of reactive oxygen species is critical for maintaining the mutualistic symbiotic interaction between Epichloe festucae and Pooid grasses. In: Popay AJ, Thom ER (eds) Proceedings of the 6th international symposium on fungal endophytes of grasses, New Zealand Grassland Association, Dunedin, pp 185–188Google Scholar
  61. Taylor JE, McAinsh MR (2004) Signalling crosstalk in plants: emerging issues. J Exp Bot 55:147–149PubMedCrossRefGoogle Scholar
  62. Thomashow LS, Weller DM (1996) Current concepts in the use of introduced bacteria for biological disease control: Mechanisms and antifungal metabolites. In: Stacy G, Keen NT (eds) Plant-microbe-interactions. Chapman and Hall, New York, pp 187–235CrossRefGoogle Scholar
  63. Tsai H-F, Siegel MR, Schardl CL (1992) Transformation of Acremonium coenophialum, a protective fungal symbiont of the grass Festuca arundinacea. Curr Genet 22:399–406PubMedCrossRefGoogle Scholar
  64. Wenzel S, Muller R (2005) Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr Opin Biotechnol 16:594–606PubMedCrossRefGoogle Scholar
  65. Wrede C, Dreier A, Kokoschka S et al (2012) Archaea in symbioses. Archaea 2012Google Scholar
  66. Young CA, Bryant MK, Christensen MJ et al (2005) Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Mol Genet Genomics 274:13–29PubMedCrossRefGoogle Scholar
  67. Yu HZC, Guo L, Li W et al (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449PubMedCrossRefGoogle Scholar
  68. Zhang HR, Boghigian BA, Armando JE et al (2011) Methods and options for the heterologous production of complex natural products. Nat Prod Rep 28:125–151PubMedCrossRefGoogle Scholar
  69. Zhou XZH, Liu L, Lin J (2010) A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1701–1717Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Toxicology and Mycotoxin Research Unit, USDAAgriculture Research Service, Russell Research CenterAthensUSA

Personalised recommendations