Skip to main content

Host-Mimetic Metabolomics of Endophytes: Looking Back into the Future

  • Chapter
  • First Online:
Advances in Endophytic Research

Abstract

Endophytic research is now gaining pace together with the technological advancement and refinements. The phenomenal potential of endophytes as prolific producer of a wide range of bioactive compounds occupies a complimentary domain of natural product research. The discovery of paclitaxel (Taxol) as bioactive natural product of endophytic origin seems to draw indisputable attention not only for their antitumor activity but as potential microbial alternative for this high in-demand drug. Plenty of opinion is given by the enthusiasts on microbial production of paclitaxel as phylogenetic process and driving paradigm of evolution; however, skeptics described it as phylogenetic anomalies. But despite being highly controversial, the horizontal gene transfer (HGT) theory still seems quite justifiable. Let’s have another example: “maytansinoid,” a potent cytotoxic agent, was isolated and characterized from microbial endophyte of the same plant; however in both cases, further investigations recorded their occurrence not only in same host but also from deferent distant hosts and even from different endophytes. So the report of taxane and related taxoids from a taxonomically distant host raises several questions. One may assume that this might be due to evolutionary invention; however, it is very unlikely to accept that all modules of gene responsible for biosynthesis of these molecules invented in microbial systems during long evolutionary symbiosis. With this chapter we are trying to get into the mechanistic aspects of host-specific chemicals synthesized by endophytic microbes together with our experience with isolation and characterization of host-specific compounds like piperine and azadirachtin. Nevertheless, the significance of this potential of endophytes cannot be ignored, as it provides not only alternative source to existing pharmaceuticals but also on the other hand save the valuable biodiversity of highly medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed MS, Fong HH, Soejarto DD, Dobberstein RH, Waller DP, Moreno-Azorero RJ (1981) High-performance liquid chromatographic separation and quantitation of maytansinoids in Maytenus ilicifolia. J Chromatogr 213:340–344

    CAS  Google Scholar 

  • Aldhous P (1992) Neem chemicals: the pieces fall in place. Science 258:893

    PubMed  CAS  Google Scholar 

  • Alper H, Jin YS, Moxley JF, Stephanopoulos G (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7:155–164

    PubMed  CAS  Google Scholar 

  • Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197

    PubMed  CAS  Google Scholar 

  • Arnold AE, Maynord Z, Gilbert G, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:167–274

    Google Scholar 

  • Asai M, Mizuta E, Izawa M, Haibara K, Kishi T (1978) Isolation, chemical characterization and structure of ansamitocin, a new antitumour antibiotic. Tetrahedron 35:1079–1085

    Google Scholar 

  • Bae GS et al (2010) Inhibition of lipopolysaccharide-induced inflammatory responses by piperine. Eur J Pharmacol 642:154–162

    PubMed  CAS  Google Scholar 

  • Bano G, Amla V, Raina RK, Zutshi U, Chopra CL (1987) The effect of piperine on pharmacokinetics of phenytoin in healthy volunteers. Planta Med 53:568–569

    PubMed  CAS  Google Scholar 

  • Bezerra DP et al (2008) In vitro and in vivo antitumor effect of 5-FU combined with piplartine and piperine. J Appl Toxicol 28:156–163

    PubMed  CAS  Google Scholar 

  • Burdon JJ, Thrall PH (2009) Co-evolution of plants and their pathogens in natural habitats. Science 324:755–756

    PubMed  CAS  Google Scholar 

  • Butterworth JH, Morgan ED (1968) Isolation of a substance that suppresses feeding in locusts. J Chem Soc Chem Commun 1968:23–24

    Google Scholar 

  • Butterworth JH, Morgan ED, Percy GR (1972) The structure of azadirachtin; the functional groups. J Chem Soc Perkin Trans 1:2445–2450

    Google Scholar 

  • Cassady JM, Chan KK, Floss HG, Leistner E (2004) Recent developments in the maytansinoids antitumour agents. Chem Pharm Bull 52:1–26

    PubMed  CAS  Google Scholar 

  • Chandrashekhar RB, Jithan A, Narsimha RY, Malla RV (2008) Fabrication and investigations on hepatoprotective activity of sustained release biodegradable piperine microspheres. Int J Pharm Sci NanoTechnol 1:87–96

    Google Scholar 

  • Chonpathompikunlert P, Wattanathorn J, Muchimapura S (2010) Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol 48:798–802

    PubMed  CAS  Google Scholar 

  • Dahiya JS, Woods DL, Tiwari JP (1988) Piperine from an Ulocladium sp. Phytochemistry 27:2366

    CAS  Google Scholar 

  • DeJong JM, Liu Y, Bollon AP, Jennewein S, Williams D, Croteau R (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93:212–224

    PubMed  CAS  Google Scholar 

  • Devkumar C, Kumar R (2008) Total synthesis of azadirachtin: a chemical odyssey. Curr Sci 95:573–575

    Google Scholar 

  • Dymowski W, Furmanowa M (1990) Investigating cytostatic substances in tissue of plants Maytenus molina in in vitro cultures. Chromatographic test of extracts from callus of Maytenus wallichiana. Acta Pol Pharm 47:51–54

    PubMed  CAS  Google Scholar 

  • Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (paclitaxel) production. Metab Eng 10:201–206

    PubMed  CAS  Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    PubMed  CAS  Google Scholar 

  • Faeth SH, Hammon KE (1997) Fungal endophytes in oak tree; long term pattern of abundance and association with leaf miners. Ecology 78:810–819

    Google Scholar 

  • Fu M, Sun ZH, Zuo HC (2010) Neuroprotective effect of piperine on primarily cultured hippocampal neurons. Biol Pharm Bull 33:598–603

    PubMed  CAS  Google Scholar 

  • Geylord ES, Preszler RW, Boecklen WJ (1996) Interactions between host plants, endophytic fungi, and a phytophagous insect in an Oak (Quercus grisea × Q. gambelii) hybrid zone. Oecologia 105:336–342

    Google Scholar 

  • Govindachari TR, Sandhya G, Raj SPG (1992a) Azadirachtin H and I: two new tetranortriterpenoid from Azadirachta indica. J Nat Prod 55:596–601

    CAS  Google Scholar 

  • Govindachari TR, Sandhya G, Raj SPG (1992b) Structure of azadirachtin K, a new tetranortriterpenoid from Azadirachta indica. Indian J Chem Sect B 31:295–298

    Google Scholar 

  • Govindachari TR, Gopalakrishnan G, Rajan SS, Kabaleeswaran V, Lessinger L (1996) Molecular and crystal structure of azadirachtin-H. Acta Crystallogr Sect B Struct Sci B52:145–150

    CAS  Google Scholar 

  • Govindachari TR, Gopalakrishnan G, Suresh G (1997) Purification of azadirachtin-B (3- tigloylazadirachtol) by preparative high performance liquid chromatography, using the recycling mode. J Liq Chromatogr Relat Technol 20:1633–1636

    CAS  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J Nat Prod 69:509–526

    PubMed  CAS  Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44:136–142

    CAS  Google Scholar 

  • Hans J, Hause B, Strack D, Walter MH (2004) Cloning characterization and immunolocalization of a mycorrhizal inducible 1-Deoxy-D-Xylulose 5-phosphate reductoisomerase in arbuscule containing cells of Maize. Plant Physiol 134:614–624

    PubMed  CAS  Google Scholar 

  • Higashide E, Asai M, Ootsu K, Tanida S, Kozay Y, Hasegawa T, Kishi T, Sugino Y, Yoneda M (1977) Ansamitocins, a group of novel maytansinoid antibiotics with anti-tumour properties from Nocardia. Nature 270:721–722

    PubMed  CAS  Google Scholar 

  • Hines PJ, Zahn LM (2009) What’s bugging plants? Introduction to special issue. Science 324:741

    PubMed  Google Scholar 

  • Hu RQ, Davies JA (1997) Effects of Piper nigrum L. on epileptiform activity in cortical wedges prepared from DBA/2 mice. Phytother Res 11:222–225

    Google Scholar 

  • Huang Q, Roessner CA, Croteau R, Scott AI (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of Taxol. Bioorg Med Chem 9:2237–2242

    PubMed  CAS  Google Scholar 

  • Isaacs J (1994) Bush food aboriginal food and herbal medicine. Lansdowne Publishing Pty. Ltd., Sydney

    Google Scholar 

  • Jain R, Rivera MC, Moore JE, Lake JA (2003) Horizontal gene transfer accelerates genome innovation and evolution. Mol Biol Evol 20:1598–1602

    PubMed  CAS  Google Scholar 

  • Jarvis AP, Morgan ED, van der Esch SA, Vitali F, Lay SV, Pape A (1997) Identification of azadirachtin in tissue-cultured cells of neem (A. indica). Nat Prod Lett 10:95–98

    CAS  Google Scholar 

  • Julsing MK, Koulman A, Woerdenbag HJ, Quax WJ, Kayser O (2006) Com-binatorial biosynthesis of medicinal plant secondary metabolites. Biomol Eng 23:265–279

    PubMed  CAS  Google Scholar 

  • Kalinowski HO, Ermel K, Schmutterer H (1993) Strukturaufklärung eines azadirachtin derivates aus dem Marrangobaum Azadirachta excelsa durch NMR-spektroskopie. Liebigs Ann Chem 1993:1033–1035

    Google Scholar 

  • Kanokmedhakul S, Kanokmedhakul K, Prajuabsuk T, Panichajakul S, Panyamee P, Prabpai S, Kongsaeree P (2005) Azadirachtin derivatives from seed kernels of Azadirachta excelsa. J Nat Prod 68:1047–1050

    PubMed  CAS  Google Scholar 

  • Karan RS, Bhargava VK, Garg SK (1988) Effect of piperine on the pharmacokinetic profile of isoniazid in rabbits. Indian J Pharmacol 30:254–256

    Google Scholar 

  • Kate KT, Laird SA (eds) (2000) The commercial use of biodiversity: access to genetic resources and benefit sharing. Earthscan Publications Ltd., London

    Google Scholar 

  • Kayser O, Quax WJ (eds) (2007) Medicinal plant biotechnology: from basic research to industrial applications. Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim

    Google Scholar 

  • Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618

    PubMed  CAS  Google Scholar 

  • Ketchum RE, Croteau R (1998) Recent progress toward an understanding of taxol biosynthesis in plant cell cultures. In: Ageta H, Aimi N, Ebizuka Y, Fujita T, Honda G (eds) Towards natural medicine research in the 21st century. Proceeding of the international symposium on natural medicines. Elsevier, Amsterdam, pp 339–348

    Google Scholar 

  • Ketchum RE, Gibson DM (1996) Paclitaxel production in suspension cell cultures of Taxus. Plant Cell Tissue Organ Cult 46:9–16

    CAS  Google Scholar 

  • Khajuria A, Thusus N, Zutshi U, Bedi KL (1997) Antioxidant potential of piperine on oxidant induced alterations in rat intestinal lumen. Indian Drugs 34:557–563

    CAS  Google Scholar 

  • Khosroushahi AY, Valizadeh M, Ghasempour A, Khosrowshahli M, Naghdibadi H, Dadpour MR, Omidi Y (2006) Improved taxol production by combination of inducing factors in suspension cell culture of Taxus baccata. Cell Biol Int 30:262–269

    PubMed  CAS  Google Scholar 

  • Klenk A, Bokel M, Kraus W (1986) 3-tigloylazadirachtol (tigloyl = 2-methyl crotonoyl), an insect growth regulating constituent of Azadirachta indica. J Chem Soc Chem Commun 7:523–524

    Google Scholar 

  • Koepp AE, Hezari M, Zajicek J, Vogel BS, LaFever RE, Lewis NG, Croteau R (1995) Cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene is the committed step of taxol biosynthesis in Pacific yew. J Biol Chem 270:8686–8690

    PubMed  CAS  Google Scholar 

  • Koul IB, Kapil A (1993) Evaluation of the liver protective potential of piperine, an active principle of black and long peppers. Planta Med 59:413–417

    PubMed  CAS  Google Scholar 

  • Kraus H, Bokel M, Klank A, Pohnl H (1985) The structure of azadirachtin and 22, 23-dihydro-23β-methoxyazadirachtin. Tetrahedron Lett 26:6435–6438

    CAS  Google Scholar 

  • Kraus W, Bokel M, Bruhn A, Cramer R, Klaiber I, Klenk A, Nagl G, Pohnl H, Sadlo H, Vogler B (1987) Structure determination by NMR of azadirachtin and related compounds from Azadirachta indica A. Juss. (Meliaceae). Tetrahedron 43:2817–2830

    CAS  Google Scholar 

  • Kupchan SM, Komoda Y, Court WA, Thomas GJ, Smith RM, Karim A, Gilmore CJ, Haltiwanger RC, Bryan RF (1972) Maytansine, a novel antileukaemic ansa macrolide from Maytenus ovatus. J Am Chem Soc 94:1355–1356

    Google Scholar 

  • Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207

    PubMed  CAS  Google Scholar 

  • Kusari S, Verma VC, Lamshöft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294

    PubMed  CAS  Google Scholar 

  • Kutney JP, Beale MH, Salisbury PJ, Stuart KL, Worth BR, Townsley PM, Chalmers WT, Nilson K, Jacoli GG (1981) Isolation and characterization of natural products from plant tissue cultures of Maytenus buchananii. Phytochemistry 4:653–657

    Google Scholar 

  • Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new pep-tide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1:265–269

    PubMed  CAS  Google Scholar 

  • Lawrence JG, Roth JR (1996) Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143:1843–1860

    PubMed  CAS  Google Scholar 

  • Lee EB, Shin KH, Woo WS (1984) Pharmacological study on piperine. Arch Pharmacal Res 7:127–132

    CAS  Google Scholar 

  • Ley SV (1994) Synthesis and the chemistry of the insect anti-feedant azadirachtin. Pure Appl Chem 66:2099–2102

    CAS  Google Scholar 

  • Ley SV, Denholm AA, Wood A (1993) The chemistry of azadirachtin. Nat Prod Rep 10:109–157

    CAS  Google Scholar 

  • Li SM, Unsöld IA (2006) Post-genome research on the biosynthesis of ergot alkaloids. Planta Med 72:1117–1120

    PubMed  CAS  Google Scholar 

  • Li S, Wang C, Wang M, Li W, Matsumoto K, Tang Y (2007) Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci 80:1373–1381

    PubMed  CAS  Google Scholar 

  • Li YC, Tao WY, Cheng L (2009) Paclitaxel production using co-culture of Taxus suspension cells and paclitaxel-producing endophytic fungi in a co-bioreactor. Appl Microbiol Biotechnol 83:233–239

    PubMed  CAS  Google Scholar 

  • Lindahl AL, Olsson ME, Mercke P, Tollbom O, Schelin J, Brodelius M, Brodelius PE (2006) Production of the artemisin in precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae. Biotechnol Lett 28:571–580

    PubMed  CAS  Google Scholar 

  • Luo X, Ma Y, Wu S, Wu D (1999) Two novel azadirachtin derivatives from Azadirachta indica. J Nat Prod 62:1022–1024

    PubMed  CAS  Google Scholar 

  • Mordue AJ, Nisbet AJ (2000) Azadirachtin from the neem tree Azadirachta indica: its action against insects. An Soc Entomol Bras 29:615–632

    CAS  Google Scholar 

  • Mordue AJ, Simmonds MSJ, Ley SV, Blaney WM, Nasiruddin M, Nisbet AJ (1998) Actions of azadirachtin, a plant allelochemical against insects. Pestic Sci 54:277–284

    CAS  Google Scholar 

  • Morgan ED (2009) Azadirachtin: a scientific goldmine. Bioorg Med Chem 17:4096–4105

    PubMed  CAS  Google Scholar 

  • Naill MC, Roberts SC (2005) Cell cycle analysis of Taxus suspension cultures at the single cell level as an indicator of culture heterogeneity. Biotechnol Bioeng 90:491–500

    PubMed  CAS  Google Scholar 

  • Nims E, Dubois CP, Roberts SC, Walker EL (2006) Expression profiling of genes involved in paclitaxel biosynthesis for targeted metabolic engineering. Metab Eng 8:385–394

    PubMed  CAS  Google Scholar 

  • Petrini O, Sieber TN, Toti L, Viret O (1992) Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat Toxins 1:185–196

    PubMed  CAS  Google Scholar 

  • Pie YQ (1983) A review of pharmacology and clinical use of piperine and its derivatives. Epilepsia 24:177–183

    Google Scholar 

  • Powel RG, Weisleder D, Smith CR, Kozlowski J, Rohwedder WK (1982) Treflorine, trenudine, and N-methyltrenudone: novel maytansinoids tumour inhibitors containing two fused macrocyclic rings. J Am Chem Soc 104:4929–4934

    Google Scholar 

  • Prakash UN, Srinivasan K (2010) Gastrointestinal protective effect of dietary spices during ethanol-induced oxidant stress in experimental rats. Appl Physiol Nutr Metab 35:134–141

    PubMed  CAS  Google Scholar 

  • Prakash G, Bhojwani SS, Shrivastava AK (2002) Production of azadirachtin from tissue culture: state of the art and future prospects. Biotechnol Bioprocess Eng 7:185–193

    CAS  Google Scholar 

  • Pullen CB, Schmitz P, Hoffmann D, Meurer K, Boettcher T, von Bamberg D, Pereira AM, de Castro França S, Hauser M, Geertsema H, van Wyk A, Mahmud T, Floss HG, Leistner E (2003) Occurrence and non-detectability of maytansinoids in individual plants of the genera Maytenus and Putterlickia. Phytochemistry 62:377–387

    PubMed  CAS  Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    PubMed  CAS  Google Scholar 

  • Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ulHasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R, Sharma A, Kumar R, Sharma RK, Qazi GN (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510

    PubMed  CAS  Google Scholar 

  • Rafiq M, Dahot M (2010) Callus and azadirachtin related limnoids production through in vitro culture of neem (Azadirachta indica A. Juss). Afr J Biotechnol 9:449–453

    CAS  Google Scholar 

  • Ramaji N, Venkatakrishnan K, Madyastha KM (1996) 11-Epi- azadirachtin H from Azadirachta indica. Phytochemistry 42:561–562

    Google Scholar 

  • Rambold H (1988) Isomeric azadirachtin and their mode of action. In: Jacobson J (ed) Focus on phytochemical pesticides, vol 1, The neem tree. CRC Press, London

    Google Scholar 

  • Rembold H, Forster H, Sonnenbichler (1987) Z.Z. Naturforsch C, 42: 4–6

    Google Scholar 

  • Rinehart KL, Shield LS (1976) Chemistry of the ansamycin antibiotics. In: Herz W, Grisebach H, Kirby GW (eds) Progress in the chemistry of organic natural products. Springer, New York, pp 232–300

    Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug pre-cursor artemisinic acid in engineered yeast. Nature 440:940–943

    PubMed  CAS  Google Scholar 

  • Rosewich UL, Kistler HC (2000) Role of horizontal gene transfer in the evolution of fungi. Ann Rev Phytopathol 38:325–363

    CAS  Google Scholar 

  • Saikkonen K, Faeth SH, Helander ML, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Ann Rev Ecol Syst 29:319–343

    Google Scholar 

  • Satdive RK, Fulzele DP, Eapen S (2007) Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A Juss. by elicitation and media optimization. J Biotechnol 128:281–289

    PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 6:229–233

    PubMed  Google Scholar 

  • Schmeer H, Jennewein S (2009) Bioorganic synthesis of the key taxoid pre-cursor taxa-4(5),11(12)-diene using a one-pot, two enzyme catalyzed re-actions. Enzyme Engineering XX, Groningen, the Netherlands

    Google Scholar 

  • Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Nat Acad Sci USA 102:7315–7320

    PubMed  CAS  Google Scholar 

  • Shweta S, Zühlke S, Ramesha BT, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiate E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122

    PubMed  CAS  Google Scholar 

  • Soliman SSM, Tsao R, Raizada MN (2011) Chemical inhibitors suggests endophytic fungal paclitaxel is derived from both mevalonate and non-mevalonate-like pathways. J Nat Prod 74:2497–2504

    PubMed  CAS  Google Scholar 

  • Srinivasan K (2007) Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Crit Rev Food Sci Nutr 47:735–748

    PubMed  CAS  Google Scholar 

  • Staniek A, Woerdenbag HJ, Kayser O (2008) Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. J Plant Interact 3:75–93

    CAS  Google Scholar 

  • Staniek A, Woerdenbag HJ, Kayser O (2009) Taxomyces andreanae: a presumed paclitaxel producer demystified? Planta Med 75:1561–1566

    PubMed  CAS  Google Scholar 

  • Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22:1261–1267

    PubMed  CAS  Google Scholar 

  • Stierle A, Strobel GA, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    PubMed  CAS  Google Scholar 

  • Strobel GA (2002) Microbial gifts from the rain forest. Can J Plant Pathol 24:14–20

    Google Scholar 

  • Strobel GA, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic fungi. J Nat Prod 67:257–268

    PubMed  CAS  Google Scholar 

  • Takumi I, Mizuho I, Siho T, Yuzi I, Hideyuki Y (2008) Piperine, a pepper ingredient, improves the hepatic increase in free fatty acids caused by 2, 3, 7, 8- tetrachlorodibenzo-p-dioxin. J Health Sci 54:551–558

    Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    PubMed  CAS  Google Scholar 

  • Timmers L (1994) Herbal medicines used against epilepsy in developing countries; Publication Number PUG/94-4. Publicaties Wetenschapswinkel Geneesmiddelen, Vrouwen

    Google Scholar 

  • Tyo KE, Alper HS, Stephanopoulos GN (2007) Expanding the metabolic engineering toolbox: more options to engineer cells. Trends Biotechnol 25:132–137

    PubMed  CAS  Google Scholar 

  • Veitch GE, Beckmann E, Burke BJ, Boyer A, Ayats C, Ley SV (2007a) A relay route for the synthesis of azadirachtin. Angew Chem Int Ed 46:7633–7635

    CAS  Google Scholar 

  • Veitch GE, Beckmann E, Burke BJ, Boyer A, Ayats C, Ley SV (2007b) Synthesis of azadirachtin: a long but successful journey. Angew Chem Int Ed 46:7629–7632

    CAS  Google Scholar 

  • Veitch GE, Boyer A, Ley SV (2008) The azadirachtin story. Angew Chem Int Ed 47:9402–9429

    CAS  Google Scholar 

  • Verma VC, Kharwar RN, Strobel GA (2009) Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat Prod Commun 4:1511–1532

    PubMed  CAS  Google Scholar 

  • Verma VC, Lobkovsky E, Gange AC, Singh SK, Prakash S (2011) Piperine production by endophytic Periconia sp. isolated from Piper longum L. J Antibiot 64:427–431

    PubMed  CAS  Google Scholar 

  • Vongpaseuth K, Roberts SC (2007) Advancements in the understanding of paclitaxel metabolism in tissue culture. Curr Pharm Biotechnol 8:219–236

    PubMed  CAS  Google Scholar 

  • Walker K, Croteau R (2001) Taxol biosynthetic genes. Phytochemistry 58:1–7

    PubMed  CAS  Google Scholar 

  • Walker K, Long R, Croteau R (2002) The final acylation step in taxol biosynthesis: cloning of the taxoid C13-side chain N-benzoyltransferase from Taxus. Proc Nat Acad Sci USA 99:9166–9171

    PubMed  CAS  Google Scholar 

  • Wani MC, Taylor HL, Wall ME (1973) Plant antitumour agents: colubrinol acetate and colubrinol, antileukaemic ansa macrolides from Colubrina texensis. J Chem Soc Chem Commun 1973:390

    Google Scholar 

  • Wenzel SC, Gross F, Zhang Y, Fu J, Stewart F, Müller R (2005) Heterologous expression of a myxobacterial natural products assembly line in Pseudomonads via Red/ET recombineering. Chem Biol 12:349–356

    PubMed  CAS  Google Scholar 

  • Weuster-Botzl D, Hekmat D, Puskeiler R, Franco-Lara E (2007) Enabling technologies: fermentation and downstream processing. Adv Biochem Eng Biotechnol 105:205–247

    Google Scholar 

  • Wildung MR, Croteau R (1996) A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J Biol Chem 271:9201–9204

    PubMed  CAS  Google Scholar 

  • Wu J, Lin L (2003) Enhancement of taxol production and release in Taxus chinensis cell cultures by ultrasound, methyl jasmonate and in situsol-vent extraction. Appl Microbiol Biotechnol 62:151–155

    PubMed  CAS  Google Scholar 

  • Yu TW, Bai L, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG (2002) The biosynthetic gene cluster of the maytansinoid antitumour agent ansamitocin from Actinosynnema pretiosum. Proc Nat Acad Sci USA 99:7968–7973

    PubMed  CAS  Google Scholar 

  • Yukimune Y, Hara Y, Nomura E, Seto H, Yoshida S (2000) The configuration of methyl jasmonate affects paclitaxel and baccatin III production in Taxus cells. Phytochemistry 54:13–17

    PubMed  CAS  Google Scholar 

  • Zazopoulos E, Huang K, Staffa A, Liu W, Bachmann BO, Nonaka K, Ahlert J, Thorson JS, Shen B, Farnet CM (2003) A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat Biotechnol 21:187–190

    PubMed  CAS  Google Scholar 

  • Zengler K, Walcher M, Clark G, Haller I, Toledo G, Holland T, Mathur EJ, Woodnutt G, Short J, Keller M (2005) High-throughput cultivation of microorganisms using microcapsules. Method Enzymol 397:124–130

    CAS  Google Scholar 

  • Zhang P, Zhou P, Jiang C, Yu H, Yu LJ (2008) Screening of taxol-producing fungi based on PCR amplification from Taxus. Biotechnol Lett 30:2119–2123

    PubMed  CAS  Google Scholar 

  • Zhao J, Shan T, Mou Y, Zhao L (2011) Plant derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11:159–168

    PubMed  CAS  Google Scholar 

  • Zhou X, Wang Z, Jiang K, Wei Y, Lin J, Sun X, Tang K (2007) Screening of taxol-producing endophytic fungi from Taxus chinensis var. mairei. Prikl Biokhim Mikrobiol 43:490–494

    PubMed  CAS  Google Scholar 

  • Zutshi RK, Singh R, Zutshi U, Johri RK, Atal CK (1985) Influence of piperine on rifampicin blood levels in patients of pulmonary tuberculosis. J Assoc Phys India 33:223–224

    CAS  Google Scholar 

Download references

Acknowledgments

VCV gratefully acknowledges the financial support from University Grant Commission (wide letter No. F. 4-2/2006/13-552/2011/BSR) and Council of Scientific and Industrial Research (CSIR), New Delhi. VCV is also thankful to the Department of Science and Technology (DST), for the recognition as “Fast track young scientist” (wide letter No.: SERC/LS-515/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Chandra Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Verma, V.C., Prakash, S., Singh, R.G., Gange, A.C. (2014). Host-Mimetic Metabolomics of Endophytes: Looking Back into the Future. In: Verma, V., Gange, A. (eds) Advances in Endophytic Research. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1575-2_11

Download citation

Publish with us

Policies and ethics